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ScooterID: Posture-based Continuous User
Identification from Mobility Scooter Rides
Devan Shah, Ruoqi Huang, Nisha Vinayaga-Sureshkanth, Tingting Chen, Murtuza Jadliwala

Abstract—Mobility scooters serve as a powerful last-mile
transportation tool for people with mobility challenges. Given the
unique riding behavior and posture of mobility scooter riders,
such user-specific mobility scooter ride data has tremendous
potential towards the design of continuous user identification
and authentication mechanisms. However, there have been no
prior research efforts in the literature exploring this unique
modality for the design of continuous user identification tech-
niques. To address this gap, this paper proposes ScooterID,
the first framework which employs rider posture data collected
from cameras on mobility scooters to continuously identify
(and authenticate) users/riders. As part of this framework, a
machine learning based model comprising of a spatio-temporal
Graph Convolutional Network and a body-part-informed encoder
is designed to effectively capture a user’s subtle upper-body
movements during mobility scooter rides into discriminating
embedding vectors. These embeddings can then be used to
reliably and continuously identify and authenticate users/riders.
Experiments with real-world mobility scooter ride data show
that ScooterID achieves high levels of authentication accuracy
with few enrollment video samples. ScooterID also performs
efficiently on resource-constrained devices (e.g., Raspberry Pis)
and is robust against adversarial perturbations to authentication
inputs.

Index Terms—Siamese Networks, Authentication, Machine
Learning

I. INTRODUCTION

The use of micro-mobility vehicles, which provide a conve-
nient and versatile last-mile transportation mode, is increasing
in urban areas [1], [2]. Among these, battery-powered mobility
scooters (as shown in Figure 1a) are especially popular among
the elderly population and people with disabilities or mobil-
ity challenges and are considered essential medical devices.
Moreover, mobility scooters are capable of generating user-
specific ride data, which has many potential applications. In
this work, we explore the use of riding posture as a biometric
for continuously authenticating or identifying mobility scooter
users. This approach is advantageous both in addressing the
security challenges of the target system and in enabling various
personalized services.

Recently, a wave of mobility scooter thefts has been re-
ported, driven by financial gain or personal use [3], [4].
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Although one-time authentication methods, such as passwords
or physical keys, are easy to deploy, they fall short when
mobility scooter users must leave their devices unattended in
public places without turning them off, for example, when
receiving medical attention at hospitals or clinics [4]. Contin-
uous authentication would be very advantageous in the above
scenario. It enhances security by re-authenticating users during
sessions after one-time authentication may fail, and it improves
usability by being seamless and transparent, without requiring
the legitimate users’ attention or notifying them. This method
is particularly well-suited to the needs of mobility scooter
users, the majority of whom are senior citizens [5]. Such an
authentication method is expected to supplement primary one-
time means of authentication, such as passwords, tokens, and
physical keys.

Another primary motivation for this study is to enable var-
ious personalized services on mobility scooters by identifying
users through continuous posture data. In shared-scooter sce-
narios, where multiple users utilize the same mobility scooter
at transportation hubs or community centers, it is crucial
to understand the specific rider’s preferences and behavior
patterns to offer personalized services. For instance, when
recommending accessible sidewalk navigation routes [6], a
young user recovering from a car accident may prefer a shorter
but more crowded route, while a senior citizen with slower
reaction time or other conditions may need a longer but safer
option. Our user identification system lays the foundation for
such services by continuously building user profiles based on
real-time posture data.

The research literature is full of continuous user authenti-
cation techniques, which employ a variety of input modalities
such as touch, posture, speech and eye gaze captured by
means of sensors, such as capacitive touch sensors, motion
sensors, microphones, cameras and biofeedback (pressure and
EEG) sensors [7]–[10]. However, the big question here is:
which sensor and input modality is appropriate for use as
a biometric in our mobility scooter riding scenario? For
instance, several of the sensors mentioned above are not
appropriate for a mobility scooter setting. In particular, adding
touch and biofeedback (pressure or EEG) sensors to mobility
scooters could potentially disrupt the riding functionality for
users or cause unexpected discomfort during mobility scooter
rides. Microphone and motion sensors could be potential
candidates for this application, however, in mobility scooter
riding scenarios, readings from microphones and motion sen-
sor readings are adversely impacted by the constantly chang-
ing ambient or environmental conditions such as background
noise, road restrictions and moving objects (e.g, vehicles and
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(a) Scenario (b) ScooterID Design Goals/Challenges

Fig. 1: ScooterID Design Goals

pedestrians), which in turn, may adversely impact the user
identification/authentication performance.

Cameras, in contrast, are relatively unobtrusive, do not
require constant interaction with the user/rider, are relatively
unimpaired by environmental conditions during rides and can
continuously capture a significant amount of user information
which could be used in creating unique biometric signatures,
and thus, are a promising sensor choice for passive and
continuous user identification/authentication in the mobility
scooter setup. User privacy, on the other hand, is a significant
challenge when employing cameras for any application, and
any authentication scheme using users’ video data should re-
spect their privacy, as much as possible. To address the privacy
concerns associate with usage of videa data, in this work
we only use non-sensitive body posture-related information
and features to generate biometrics. Moreover, we avoid the
storage of any information which can be used to reconstruct
any personally identifiable information in the video data.

Temporal posture data captures intricacies in a rider’s phys-
ical biases and movement tendencies, which are abundant
in human movement. Famously, walking patterns have been
called the ”sixth vital sign” [11], reflecting physiological
changes and commonly used in diagnoses. Gait patterns are
also commonly used in forensics and person identification
[12], [13]. Based on the success of full gait analysis, we
explore the potential of upper-body movement as a new
biometric. It is currently not known, and there has been no
prior work on, which features of the upper-body posture
and movement patterns can be employed to accurately and
reliably discern a user’s identity during mobility scooter rides.
An additional challenge in this regard is robustness against
variability in the riding behavior of users and security against
spoofing by malicious adversaries. We envision deep machine
learning models playing a critical role in learning to correlate
appropriate features from upper-body posture and movements
(during mobility scooter rides) to user/rider identity. However,
to design appropriate deep learning models we will require a
large and representative dataset of mobility scooter rides for
training and validation tasks. Unfortunately, currently there
are no existing datasets of mobility scooter riding videos
available in the literature. We also anticipate the proposed user
identification and authentication framework, and the related
classification models, to be deployed on resource-constrained
edge devices. Thus, designing an efficient framework to run on
those devices is a critical requirement, and yet another design
challenge.

In this work, we present ScooterID, a deep learning frame-

work for riding behavior and posture based continuous iden-
tification and authentication of mobility scooter riders. To
achieve the design goals of this framework (summarized
in Figure 1b), we extract the rider’s upper-body keypoints
(joints) from video frames and continuously process sequential
coordinates while they ride the scooter to authenticate the rider.
We propose a novel deep model for generating user-specific
embedding vectors based on the spatio-temporal representation
of posture features and design a Siamese network to learn
a distance function between such embedding vectors. In the
keypoint coordinates extraction, we explore three different
human pose estimation models [14] with variations in output
dimensions, to study their impact on user identification and
authentication accuracy and system efficiency. In the deep
model design, we leverage Graph Convolutional Networks
(GCN) [15] and a bodypart-informed hierarchical encoding
structure which have great capacity in extracting features rep-
resenting unique spatial correlations of upper-body keypoints
in time series when driving mobility scooters. Mobility scooter
riders may have mobility challenges and medical conditions
(e.g., stroke or Parkinson’s disease) which can cause unique
asymmetric movement patterns showing only in a local spatial
region. Correspondingly, in the deep auto-encoder design
of our framework, we group upper-body joints from local
physiological regions and create a hierarchy to represent the
unique movement pattern of each upper-body region and their
interconnections in the final rider embedding. To tackle the
challenge of riding behavior variability, our carefully-designed
Siamese network can enable easy and efficient updates of
riders’ embeddings and maintain a high level of identification
and authentication accuracy over time.

In summary, the contributions of this paper are as follows:

• We propose ScooterID, a novel continuous identification
and authentication system for mobility scooter riders
based on biometrics derived from their upper-body pos-
ture and riding behavior. The design of ScooterID consists
of a Siamese network with a novel rider embedding gen-
eration model comprised of a spatio-temporal GCN and
a pyramid bodypart-informed encoder to extract users’
features that effectively capture their subtle patterns in
upper-body movement while riding mobility scooters.

• We evaluate the performance of ScooterID by con-
ducting experiments with real-world mobility scooter
ride data collected from 42 volunteers. Our empiri-
cal results show that ScooterID achieves high levels
of identification/authentication accuracy and is efficient
enough for deployment in resource-constrained systems;
ScooterID is also advantageous over relevant state-of-
the-art models for behavior-based authentication as it is
able to address user behavior variability with an easy and
efficient re-enrollment mechanism.

• We also evaluate the robustness of ScooterID against
a variety of input manipulation and adversarial sce-
narios, including pixel-level modifications, posture dis-
placements and generative scenarios focusing on spatio-
temporal attacks.
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II. RELATED WORK

Behavioral Biometrics-Based User Identification and Au-
thentication - Owing to the increased presence of so-
phisticated sensors on modern mobile and wearable devices,
recent research efforts have explored using various behavioral
biometrics based methods for user identification [16], [17]
and authentication [10], [18]–[20]. For instance, Sitová et. al
[18] authenticate smartphone users using grasping and tapping
patterns, while Kumar et. al. [10] accomplish it by fusing
typing, swiping and phone movement patterns. Ehatisham-
ul-Haq et. al. [19] leverage smartphone accelerometer, gyro-
scope, and magnetometer sensor data to determine whether
walking, sitting, standing, running, or using a staircase offer
distinguishing enough patterns for successful continuous au-
thentication. These works show promising trends in leveraging
different input modalities in providing real time and on-going
user identification and authentication services in a ubiquitous
computing environment, as a complement to the conventional
one-shot or knowledge-based authentication schemes such as
passwords.

Some behavioral biometrics-based authentication efforts
in the literature have focused on identifying discriminating
movement patterns to serve as biometric signatures [21]–
[24]. For example, Bhalla et al. [25] leverage head movement
preferences detectable from an AR headset to successfully
authenticate a user from ambient movement every 3 seconds.
Zhang et. al. [23] instead choose to authenticate VR users
continuously via eye movement in response to implicit visual
stimuli, achieving notable accuracy and adversarial robustness.
Some other research efforts (e.g. [24]) have employed com-
puter mouse dynamics for continuous authentication. These
works have validated that the natural difference in each user’s
movement during some specific tasks, as captured by mobile
and wearable device sensors, can be employed as effective
biometrics for robust and continuous identification and authen-
tication across multiple application scenarios.

However, most of the above efforts rely on sensors that are
hard to deploy in a mobility scooter riding scenario without
significantly interfering with users’ riding activity or down-
grading their comfort level. Vision-based behavioral modeling
that employs a camera is a passive and less disruptive modality,
but it needs an appropriate mobility scooter riding dataset for
model design which, unfortunately, is currently unavailable in
the research literature. To overcome this, we build a novel
continuous user identification and authentication system from
the ground up by collecting and using our own real-world
mobility scooter riding posture data.

Deep Models for Continuous Authentication and Gait
Analysis - For continuous authentication in dynamic en-
vironments, deep learning models show great promise due
to their powerful feature learning capabilities. Some works
have applied Recurrent Neural Network (RNN) models [26]
in learning the sequential patterns of user behaviors e.g., [27]–
[29]. Coskun et. al. [29] leverage a novel attention-based
Long Short Term Memory (LSTM) Siamese network for hu-
man motion analysis and person identification. Convolutional
Neural Networks (CNN) have also been widely applied in

continuous behavioral biometrics-based authentication [30]–
[33]. Fereidooni et. al. [33] perform continuous authentication
for users of a mobile banking app with a 1D CNN in a Siamese
network by using accelerometer, gyroscope and magnetometer
data. Cardaioli et. al. [32] use user face images and employ
a 2D CNN to authenticate users continuously despite camera
blurring, offering reliable authentication and addressing user
privacy. However, these prior works primarily leverage deep
models to generate user representations out of temporal or
simple spatial patterns (e.g., sequence of touch point coor-
dinates). When extracting features from riding postures, we
require more complicated networks to learn from sequences
of higher dimensional video data that are correlated spatially
by the human body confinement.

Deep gait analysis [34], [35], which is the study of recog-
nizing how people walk using deep models, is also relevant
to our work. Computer vision-based gait analysis attempts to
learn user movement features from analysis of skeletons or
silhouettes of subjects, but for different purposes such as sport
training, health assessment, etc. Models for predicting clinical
scores and analyzing gait in Parkinson’s frequently leverage
graph convolutional networks [36], [37]. Despite these existing
works in deep gait analysis, mobility scooter riding involves
upper-body movements which are drastically different than
the full body engagement when people walk. Moreover, no
existing deep gait analysis work has been tailed to meet the
performance requirement of identification and authentication
systems. Our work focuses on building a robust biometric
for identifying and authenticating mobility scooter users using
their unique upper-body movement features.

III. ScooterID FRAMEWORK

A. System Overview

ScooterID uses mobility scooter riders’ upper-body posture
to create unique user-specific signatures which can be used for
identification and authentication. ScooterID employs a camera,
capable of producing video frames of at least 196×196 pixels,
installed on the handle of the scooter facing the upper-body
of the rider. To protect privacy of users, we avoid storing
information processed from user facial data, as such data (e.g.,
embeddings produced by neural networks) can be used to
reconstruct a user’s face [38]. Thus, in our initial processing
of video frames, all user facial data is removed and future
processing solely relies on torso information.

Similar to other deep learning-based authentication systems
using behavioral biometrics (e.g., [39]), the ScooterID sys-
tem is comprised of three stages, i.e., training, registra-
tion and identification/authentication. As shown in Figure 2,
ScooterID leverages an existing repository of mobility scooter
users’ riding videos to train a carefully architected machine
learning model which produces embeddings from input video
segments. After the model is trained, and is available to the
users via API access to a cloud server or local deployment,
a new user can register into the identification/authentication
system. To enroll in the system, a user rides the mobility
scooter for between 40 and 135 seconds and video segment
samples of the user riding are recorded and processed using
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(a) Model Training Stage

(b) Rider Registration Stage

(c) Identification/Authentication Stage

Fig. 2: ScooterID System Model.

the trained model to produce the rider embedding, which is
stored on-device. For mobility scooters with single users, in
the authentication stage, when a user is riding the mobility
scooter, the video frames from the camera are sampled and
passed to ScooterID, which then yields an authentication result
of “match” or “no match” by computing the similarity between
the current rider’s generated embedding and the enrolled user’s
stored embedding and leveraging thresholds determined by
withheld test sets and user preference. For mobility scooters
shared among multiple users, the identification stage is similar
to authentication, except that the current rider’s embedding
will be compared with all the stored embedding belonged to n
different users, and identified as one of them based on distance.

ScooterID uses only the videos of riding postures as input.
The continuous video stream of the mobility scooter rider is
sampled and processed into T -frame segments, each segment
producing one identification/authentication decision. We lever-
age existing pose estimation techniques [40]–[42] to gather the
user skeleton information from each processed video frame
which depicts the spatial relation among the user’s upper-body
keypoints. Then the keypoint coordinates detected from T -
frame video segments form a sequence which is fed into the
subsequent neural network as input.

The identification and authentication functionality of
ScooterID, requires to either classify the current rider as one
of the registered users, or distinguish between a registered
user and an unauthorized rider not registered with that scooter.
To this end, we employ a Siamese Network Architecture
[43], which can effectively learn a similarity function to
compute the distance (closeness) between the embedding of
the registered riders and that of the current rider. For training
the Siamese network, different users’ riding video segments

are grouped into triplets. Three input samples are fed to
the network in succession with the weights being identical.
The loss values are calculated using all three input samples
and then back-propagated. In the identification/authentication
stage, ScooterID employs the trained Siamese Network to
output the distance (e.g., Euclidean distance) between an input
pair (i.e., current rider’s and the registered user’s embeddings).

As shown in Figure 3, ScooterID system design includes the
following main components: 1) input data acquisition, 2) pose
estimation to generate upper-body keypoint coordinates, 3) a
graph convolutional neural network to extract spatio-temporal
features of upper-body keypoints movement, 4) a bodypart-
informed deep encoder to generate an embedding for the user,
5) a triplet loss function for model training, and a distance-
based classifier for the final identification and authentication
result. The last step, i.e., distance-based classification step,
can be customized based on users’ preferences of appropriate
distance threshold values which in turn determines system
sensitivity and usability.

B. Pose Estimation for ScooterID
The first step towards abstracting discriminating features to

represent different users in ScooterID is to perform human
pose estimation using the sampled frames from the rider’s
video. Specifically, human pose estimation is used to de-
tect/predict keypoints (on human body) such as hands, head
and elbow in 2D or 3D coordinate system from an image of the
human body. Figure 4 shows a rider’s upper-body keypoints
detected by the pose estimation in 2D and 3D representation.
Intuitively, 3D coordinates of keypoints contain more infor-
mation of upper-body posture compared to 2D coordinates. In
Figure 4b, the red arrows illustrate the movement of the two
arms when making a left turn while riding the mobility scooter.
In this scenario, 3D representation may have advantages in
capturing the posture spatial feature in anterior and posterior
movements than 2D coordinates. 2D coordinates may not be
able to fully capture the detailed movement of wrists and
other keypoints in the depth dimension. However, on the other
hand, it may cause other upper-body keypoint coordinates’
change correspondingly, which can be reflected in their 2D
coordinates.

For ScooterID, we experiment with three existing human
pose estimation models to gather keypoints. In particular,
we employ MoveNet [42], MediaPipe [40], and Yolov7 [41],
among which MoveNet and Yolov7 produce 2D keypoint coor-
dinates while MediaPipe yields 3D coordinates. The objectives
of testing three pose estimation models for ScooterID are:
(i) to investigate the feasibility of running the models on a
resource-constrained platform such as Raspberry Pi, based
on two popular machine learning frameworks, i.e., Pytorch
(Yolov7) and Tensorflow (MediaPipe and MoveNet), and (ii)
to determine if a 3D coordinate representation of keypoints can
be more advantageous in accurately computing the final em-
beddings for the identification/authentication task, compared
to 2D coordinates. In Section IV, we will present the related
results in more details.

We process video frames from the camera one at a time,
with a stride length s depending on the processing speed of
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Fig. 3: System Framework of ScooterID that Authenticates Mobility Scooter Riders based on Riding Postures

(a) 2D Representation (b) 3D Representation

Fig. 4: 2D vs 3D representations of upper-body keypoints:
neck, left and right shoulders, left and right elbows, left and
right wrists, left and right hip.

the chosen pose estimation model. The pose estimation result
of each frame is expected to include the coordinates of the nine
keypoints as shown in Figure 4. For frames where the pose
estimation models have low confidence, we use the coordinates
from prior frames. We group the N (= 9) keypoints from
T frames into a sequence, and use the sequences as inputs
to the embedding generation model which comprises of a
spatio-temporal upper-body GCN and a bodypart-informed
deep encoder.

C. Spatio-Temporal Upper-body GCN

To capture the spatial and temporal characteristics of the
movement of upper-body keypoints during scooter riding,
using the sequence of keypoint coordinates, we construct a
spatio-temporal graph as shown in Figure 5. In particular, we
construct an undirected spatio-temporal graph G = (V,E)
based on the sequence of upper-body keypoint coordinates,
with N keypoints (with either 2D or 3D coordinates), and T
video frames. The set of nodes is denoted as V = {vi,t|1 ≤
i ≤ N, 1 ≤ t ≤ T}, where i is the keypoint index, and
t is the frame index. We associate each node with a 2D
or 3D vector of features (coordinate values). In the spatio-
temporal graph, we define two types of edges: (i) spatial edges
− connecting nodes where the corresponding upper-body
keypoints are connected physically, such as, left elbow and left

shoulder (connected by left upper arm); (ii) temporal edges −
connecting the same keypoint in neighboring frames. Formally,
E = {{vi,t, vj,t}|{i, j} ∈ P, 1 ≤ t ≤ T} ∪ {{vi,t, vi,t+1}|1 ≤
i ≤ N, 1 ≤ t ≤ T − 1}, where P is a set of physically
connected keypoint pairs. We let A denote the adjacency
matrix of the spatio-temporal graph G = (V,E).

Then, based on the graph G, we form a Graph Con-
volutional Neural Network (GCN) composed of two graph
convolution layers, each followed by the batch normalization
and ReLU activation, with implementation adapted from [44]
[45]. The layer-wise propagation rule is represented as

g(H(l),A) = σ(D̂
−1/2

ÂD̂
−1/2

H(l)W (l)) (1)

with Â = A+ I denoting the adjacency matrix with inserted
self-loops, where I is the identity matrix. D̂ is the diagonal
node degree matrix of Â. The identity matrix I is added to
ensure each node is included in the convolution process and
D̂

−1/2
ÂD̂

−1/2
is for normalizing Â. W is the connection

parameter matrix, and H(l) is the node in hidden layer
l. The edge weights in the GCN are set to 1, and our
activation function σ is ReLU. This layer-wise propogation
rule allows the flow of state between adjacent key-point nodes
and, when repeated n times, allows each node to develop an
understanding of its local region of keypoints at most n edges
away.

With Eq. (1) indicating the aggregating node representations
from their direct neighborhood, GCN has a clear meaning of
vertex localization. In our GCN, we have two layers with
64 channels each, extending the receptive region for each
resultant joint embedding, while being less computationally
intensive than a single layer with more edges. The edges in
the GCN enable the network structure to learn the spatial
and temporal relations of different keypoints in upper-body
movement during mobility scooter riding. The GCN produces
an encoding composed of the correlated keypoints movement
features as its output.

D. Bodypart-Informed Deep Encoder

Following the GCN, as described above, we leverage the
spatial hierarchy of the upper-body, which is tied to the
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Fig. 5: Generation of a spatio-temporal graph from a sequence
of rider’s video frames and their corresponding a skeletal
subgraphs with 9 keypoint nodes and edges representing
physical connections on the body.

riding posture, to design the deep encoder for generating rider
embeddings. The encoder allows increased data processing
and more abstract pattern recognition while maintaining model
efficiency due to localized scope. We group the upper-body
keypoints into four regional subsets, corresponding to four
body parts, i.e., the upper torso (neck, left shoulder, right
shoulder), lower torso (left hip, right hip), left arm (left
shoulder, left elbow, left wrist), and right arm (right shoulder,
right elbow, right wrist).

Each of the body part is processed by a deep encoder
that consists of five residual convolutional layers each fol-
lowed by the batch normalization and a ReLU activation.
The residual connections prevent over-processing and address
the vanishing gradient problem. After the second and fourth
convolution layer, there is a 1D max pooling layer. Each
encoder produces a d-dimensional segment embedding via
global average pooling. Given these four embeddings, a two-
layer fully connected network with a ReLU activation then
produces a single embedding for the T -frame video sample.

In other words, ScooterID movement processing begins
locally at each keypoint, before employing the results of that
layer at a broader level with the regional convolutions, and
culminating in a final fully connected network to generate
the rider’s embedding. Such a pyramidal architecture has
several advantages. First, it allows the model to focus on
one body part at a time, constructing embedding vectors for
each bodypart corresponding to the physical constraints in the
body movement, denoted as part features in Figure 6. Second,
such segmented convolutions are more efficient compared to
full convolutions, especially in a computationally constrained
setting/device.

E. Model Configuration

Before discussing the loss function used in our network, we
summarize our rider embedding generation model with more
configuration details in this subsection. Figure 6a depicts the
detailed architecture of ScooterID’s rider embedding genera-
tion model, which takes a sequence of keypoint coordinates as
input and outputs an embedding vector. The input dimension
is (T, 9, 3) for 9 keypoints with 3D coordinates, with T being

the number of frames that are used to make an identifica-
tion/authentication decision. The model has two layers of
graph convolutions in the Spatial Temporal GCN. Each graph
convolutional layer is followed by a Batch Normalization
and a ReLU activation function. The output of each graph
convolutional layer is of dimension (T, 9, 64). Each of the
9 keypoints is represented with a feature of size 64. The
(T, 9, 64) output of the second graph convolutional layer is
taken by four bodypart encoders as input. The encoders extract
features for different upperbody parts, i.e., upper torso, lower
torso, left arm and right arm, each outputting a feature of
dimension 64. After combining the four bodypart features with
the fully connected layers with ReLU activation in the final
step, the rider’s final embedding of size 64 is produced.

Figure 6b shows the detailed architecture of the bodypart
encoder model, as described above. Since there are 3 keypoints
in each part, with 64 ∗ 3, the input to the encoders is of
dimension (192, T ), except for the lower torso being (128, T )
with 2 keypoints only. The part encoder consists of residual
convolutional layers with ReLU, max-pooling layers and a
terminating global average layer.

F. Loss Function and Triplet Mining

In order to make the embedding discriminating enough to
perform mobility scooter rider identification and authentica-
tion, in our model training, we use the triplet metric loss func-
tion [46]. The primary motivation for utilizing triplet metric
loss is to encourage the model to map video samples from the
same rider near to each other. The triplet metric loss function,
as described in Eq. (2), minimizes the Euclidean distance
between embeddings from the same user and maximizes the
distance between embeddings from different users.

L(xa, xp, xn) = max(||f(xa)−f(xp)||2−||f(xa)−f(xn)||2+α, 0)
(2)

Here, xa and xp represent embedding vectors from the same
user, denoted as the anchor embedding and positive embedding
respectively. xn is an embedding from a different user. α
represents the margin between positive and negative pairs, and
f is the model function. To minimize the loss, the model aims
to satisfy the following:

||f(xa)− f(xp)||2 + α < ||f(xa)− f(xn)||2 (3)

This implies that embeddings from the same rider will be
pulled closer, whereas those from different riders will be
further away, with an enforced margin of α between samples
from different classes.

Rather than using all possible triplets of anchor, positive and
negative samples in the training dataset, we accelerate model
training by performing easy-positive and semi-hard-negative
Triplet Mining [47]. As illustrated in Figure 7a, for each anchor
in a batch, we choose from the batch the closest positive
embedding to the anchor sample and the closest negative
embedding that is not closer than the positive embedding to
produce challenging triplets to train the model.

By employing the triplet loss mechanism in training, the
distance between the same rider’s embeddings decreases and
that between different riders’ embeddings increases. In this
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(a) Rider Embedding Generation Overall Architecture

(b) BodyPart Movement Encoder

Fig. 6: Model Configuration

(a) Illustration of triplet mining
with easy positive and semi-hard
negative

(b) t-SNE visualization of 5 rid-
ers’ embeddings after triplet min-
ing

Fig. 7: Training Visualization

way, the embeddings can capture the subtle differences in
distinct riders’ upper-body riding behavior to distinguish them,
and thus produce reliable identification/authentication results.
Figure 7b shows the distribution of embeddings belonging to
five different riders in one group (100 embeddings for each
rider), with t-SNE [48] visualization, after triplet loss based
training. As we can see, embeddings for the same rider with
the same color are clustered closely while those for different
riders are far apart, indicating that riders are separable in
the embedding space transformed from the upper-body riding
behaviors.

IV. EVALUATION

ScooterID can conduct two different tasks, i.e., user au-
thentication and user identification. To thoroughly assess
ScooterID, for the user authentication task, we carry out

comprehensive evaluations to assess it’s accuracy, reliability
and efficiency under a variety of settings and operational pa-
rameters. Due to limitation of space, for the user identification
task, we only include basic performance evaluation results
in Section IV-H. But because both user authentication and
identification in ScooterID are based on embedding distances
generated by the same deep learning framework, we expect
results for user identification similar to those reported for
authentication in various settings.

A. Data Collection

We collect mobility scooter riding data from 42 (9 female,
33 male) on-campus participants with ages ranging from 18
to 90, weights from 140 to 200 lbs, and heights ranging from
66 to 73 inches. In order to have the most diverse group
of participants possible, we do not screen participants based
on their races, prior mobility scooter riding experience, body
shapes, or health conditions. They are preinformed with the
same set of riding tasks, and the participation is based on
the volunteers’ willingness and self assessment. To collect
the video frames of participants’ upper-body movements when
riding the mobility scooter, we mount a web camera on the
handle facing the rider and focusing on the areas below the
neck, as showcased in Figure 8a. Participants spent between
14 − 18 minutes to complete the riding tasks on private
university roads, including forward riding, backwards riding,
45◦ and 90◦ left and right turns, 360◦ rotations, both on-
pavement and on-grass riding, and sudden acceleration and
deceleration with gradual inclines and descents. After filtering
out participants who either did not follow the tasks correctly
or concluded the tasks early, we were able to record riding
video data from 35 different/unique participants. Overall, our
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(a) System setup on mobil-
ity scooter

(b) Resource utilization test setup on
a Raspberry Pi 4B.

Fig. 8: Illustration of Experiment Setup

evaluation dataset contains approximately 15 hours and 41
minutes of recorded mobility scooter riding video footage,
with a total of 1.69 million frames, which will be publicly-
available soon. Our data collection and experiments have been
approved by the university’s Institutional Review Board or
IRB.

B. Experiment Setup

We implement our proposed ScooterID system in Python.
The main Python libraries that we used for the implementation
of our model architecture and training phase include PyTorch
2.1, PyTorch Geometric 2.4, and PyTorch Metric Learning 2.3.
The Adam optimizer is used, and the learning rate is set as
0.001 for 50 epochs of training based on empirical observation.
We utilize a Tewiky TW-05 Webcam with wide angle lens
[49] to capture riding videos and the on-device evaluations are
performed on a Raspberry Pi 4B comprising of a quad-core
Cortex-A72 (ARM v8) CPU and 4GB Ram memory running
on Raspberry Pi OS (64 bit). Identification/Authentication
models are trained on computing clusters at the authors’
institutions and on Google Cloud Computing. The computation
devices used include Intel Skylake 32-core CPUs, DL160
CPUs, Nvidia A100 GPUs, and Tesla P100 GPUs.

For each test, we divide the dataset of 35 participants into
7 subsets and each subset contains 5 participants’ data. We
apply 7-fold cross validation - the riding video data in 6
subsets (from 30 participants) is used as training data and
1 subset with 5 participants’ data (14%) is used as test data
in the evaluation. From the videos used for testing, we gather
authentication enrollment samples across the first 135 seconds
of each scooter use. The evaluation results are the average of
the cross-validation. We test the model with T = 40 frames
per authentication decision and 10 fps video input.

C. Performance Metrics

We assess the authentication accuracy of ScooterID using
the following metrics.

• False Acceptance Rate (FAR) captures the rate at which
ScooterID incorrectly accepts an authentication attempt
by unauthorized users. In other words, FAR is the ratio
of the number of video segments in which authentication
attempts by unauthorized users is incorrectly accepted by

ScooterID (as valid authentication) to the total number of
tested video segments from unauthorized users.

• False Rejection Rate (FRR) captures the rate at which
ScooterID incorrectly rejects an authorized user’s authen-
tication attempt. In other words, FRR is the ratio of
the number of video segments in which authentication
attempts by authorized users are incorrectly rejected to
the total number of tested video segments from authorized
users.

• Area Under the Curve of the Receiver Operating Charac-
teristic Curve (AUCROC) refers to the ability of the sys-
tem to discriminate between authorized and unauthorized
mobility scooter riding videos across all possible thresh-
olds where the ROC curves are generated using FAR as x
coordinates and (1-FRR), and the True Acceptance Rate,
as y coordinates.

• Equal Error Rate (EER) is the point when FAR and FRR
are equal. By varying different thresholds, this point can
be found when the curves for FAR and FRR intersect, i.e.,
when EER = FAR = FRR, meaning when the system
is equally likely to incorrectly accept an unauthorized
user and to incorrectly reject an authorized user. With a
lower EER, the system is considered more secure and
usable.

• True Acceptance Rate (TAR) is used to measure the accu-
racy of ScooterID when performing the user identification
task. TAR is the number of correctly identified test users
among a group of known users (determined by the lowest
embedding distance) over the total number of tests.

Because users of mobility scooters may have various pref-
erences in setting their authentication system alarm thresh-
old, with different considerations for security/sensitivity and
user experience, instead of FAR and FRR which depend on
threshold, we use AUCROC and EER in our evaluations as is
the case in many other similar biometrics-based authentication
works, e.g., [28], [50].

D. ScooterID Performance

In this section, we outline the evaluation results measuring
ScooterID’s performance in discriminating between autho-
rized and unauthorized mobility scooter riding videos. We
first demonstrate (in Figure 9) the efficacy of the distance-
based mechanism used in ScooterID by showing an example
instance of how distance between embeddings (obtained by
our models) change when switching from an authentic user
to an unauthorized user. The figure shows one distance value
between the embeddings for every 40 frames. The figure also
clearly shows the gap when the authentic user (user ID 25) is
switched by an unauthorized user (user ID 1), i.e, the left side
distance measure is when the authentic user is riding, while the
right side measure is when the unauthorized user takes over
and starts riding. It is clear from this sample distance plot that
the user switch causes an abrupt and significant (more than
2×) increase of the distance between the embeddings, which
can be used by ScooterID to detect the unauthorized takeover.
Next, we evaluate the impact of parameters such as embedding
vector size (dimension), amount of video segments used for
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Fig. 9: Observed distance change between embeddings when
switching from legitimate user (ID 25) to unauthorized rider
(ID 1).

user enrollment (enrollment samples), and the choice of pose
estimation model on system performance measured in terms
of AUCROC and EER.

Impact of Embedding Vector Size - We vary the size of the
embedding vector generated by the ScooterID model between
10, 30, and 60 dimensions, and evaluate the corresponding
authentication accuracy with 40 enrollment samples. Figures
10a, 10b, and 10c shows the ROC curves when using Yolov7,
MediaPipe and MoveNet, respectively. In each figure, we
plot three ROC curves with the embedding vectors of size
10, 30, 60. From these plots we can see that, in general,
the system performance is increasing with larger embedding
vector sizes and no matter which pose estimation model is
used, ScooterID achieves high levels of accuracy, as reflected
by the ROC curves and AUCROC values (ranging from 0.832
to 0.995).

Impact of Number of Enrollment Samples: We investigate
the impact of the number of enrollment samples used to
create a new user’s embedding vector on the system accuracy
performance. We measure AUCROC and EER when the
number of enrollment samples varies from 1 to 40 and the
embedding vector size is fixed at 60. As shown in Table I,
ScooterID yields high AUCROC values (ranging from 0.8390
to 0.9689) using very few enrollment samples across all the
three different pose estimation models. Within the results
shown, the peak AUCROC values (0.912, 0.901, 0.969 for
MoveNet, MediaPipe, Yolov7, respectively) are all obtained
when the number of enrollment samples is 40, while the
increasing trend of AUCROC is not consistent with the number
of enrollment samples varying from 1 to 20. For the EER
values, it also shows ScooterID has strong performance in
achieving high levels of accuracy (low EER values from
0.0319 to 0.2244) with few enrollment samples. Similar to
AUCROC, we observe that more enrollment samples do not
always generate more accurate models for authentication.

Impact of Pose Estimation Models: From Figure 10 and
Table I, we can also evaluate the impact of pose estimation
models on ScooterID’s performance. From these results, we
observe that ScooterID with Yolov7 yields exceptional over-
all performance in learning a user’s upper-body movement
features while riding a mobility scooter, thus resulting in
better authentication accuracy, compared to the MoveNet and

TABLE I: AUCROC and EER of ScooterID with Varying
Numbers of Enrollment Samples

Pose Number of Enrollment Samples
Option 1 5 10 20 40

AUCROC
MoveNet 0.8724 0.9119 0.9060 0.9019 0.9120

MediaPipe 0.8390 0.8787 0.8991 0.8976 0.9011
Yolov7 0.9672 0.9594 0.9667 0.9668 0.9689

EER
MoveNet 0.1732 0.1396 0.1450 0.1506 0.1409

MediaPipe 0.2244 0.1918 0.1892 0.1525 0.1657
Yolov7 0.0786 0.0401 0.0319 0.0380 0.0771

MediaPipe. We can also see that ScooterID with the MediaPipe
pose estimation model resulted in lower accuracy compared
to the other two models, although MediaPipe produces 3D
coordinates of rider’s upper-body keypoints. This is most
probably due to the fact that the MediaPipe pose estimation
model works by first locating the nose of a person and then
using it to estimate the coordinates of the other landmarks
(keypoints). Due to the privacy-aware nature of our design,
the captured video frames do not include the riders’ faces, and
thus the MediaPipe model finds it challenging to effectively
generate the 3D coordinates of the keypoints. Comparatively,
the MoveNet model which uses the body center as the base or
starting point for pose estimation performs much better. For
the remainder of the evaluation results for ScooterID, unless
otherwise stated, we assume an embedding vector dimension
of 60 and an enrollment sample number of 40, with Yolov7
being employed as the pose estimation model.

E. Comparative Performance

Next, we perform an ablation study to investigate the impact
of the major components of ScooterID’s embedding extraction
architecture on its performance, and also comparatively study
ScooterID with two relevant state-of-the-art models.

Models for Ablation Study: To study the effect of the two
major components in ScooterID, i.e., spatio-temporal upper-
body GCN and bodypart-informed deep encoder, we create
two alternative models by removing these two components one
at a time. In particular, we first create a No-GCN model, which
directly takes sequences of keypoint coordinates, without the
two graph convolutional layers, as input to the deep encoder
with pyramid. The other components of ScooterIDremain the
same in the No-GCN model. Next, we also create a No-
Pyramid model, which is trained without separate bodypart
encoders, but instead with only one residual 1D CNN based
deep encoder which takes in 9 keypoint coordinates together
to create the embedding vector.

Models for Comparative Study: We also comparatively
study the accuracy of ScooterID with two other well-known
models in the literature. First is Dynamic Time Warping
(DTW) [52], which is an algorithm for measuring similarity
between two temporal sequences and has been widely applied
in behavioral biometrics-based continuous authentication (e.g.,
[53]). The second model is based on the attention mechanism
[54] which adds soft weights to the neural network that can
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(a) Pose estimation model Yolov7 (b) Pose estimation model MediaPipe (c) Pose estimation model MoveNet

Fig. 10: ROC Curves of pose estimation models of ScooterID with varying embedding vector sizes.

Fig. 11: Comparison of AUCROC and EER between
ScooterID and attention-based model [51], DTW [52], No-
GCN and No-Pyramid models.

emphasize features based on relevance, and is another state-of-
the-art method in biometrics-based continuous authentication
(e.g., [55]). For the second model, each node in the spatio-
temporal graph attends to connected nodes with 10-headed
dynamic graph attention with output concatenation [51].

Performance across Models: We measure the AUCROC
and EER of all the 5 models (i.e., ScooterID, No-GCN,
No-Pyramid, Attention-based Model and DTW), keeping the
model parameters the same, i.e., input dimension: (40×9×2)
and embedding vector dimension 60 with various numbers of
enrollment samples. As we can see from the results (Figure
11), ScooterID outperforms the other four models with higher
AUCROC and lower EER values across all settings. This
shows the significance of the GCN and the pyramid structure
of the deep encoder in our architecture, as without either of
them the accuracy of ScooterID is impacted negatively. The
spatio-temporal GCN has greater positive impact on the per-
formance of ScooterID than the pyramid in the deep encoder.
We note that the EER value with 40 enrollment samples shows
an unexpected increase compared with 20 samples. We believe
this fluctuation is due to oversampling for some users with a
short enrollment period. In ScooterID system deployment, the
amount of enrollment samples can be optimized for different
users and enrollment experiences to achieve best performance.
At the same time we do not find that oversampling signifi-
cantly affects other performance metrics. On the other hand,
attention-based architecture achieves AUCROC values close
to ScooterID, but not higher. However, based on the results

of training and 1000 inference runs, the average training and
inference times for the attention-based architecture is 6.847×
and 1.238× slower than ScooterID, respectively.

F. Resource Utilization

We evaluate the execution efficiency of ScooterID on both
a Raspberry Pi 4B (with Quad-core ARM v8 CPU and 4GB
RAM running a 64-bit Raspberry Pi OS, as shown in Figure
8b) and an Acer Aspire A515-46 laptop (with AMD Ryzen
3 3350U Quad-Core CPU and 4GB RAM memory running
Windows 11 OS). To begin our evaluation, we first break
down the ScooterID prototype into core steps, and test the
execution time and energy consumption during authentication.
As a baseline for measuring energy consumption, we use a
power bank of +5V 3A with capacity of 10400mAh. We
first focus on the resources utilized by the pose estimation
and authentication inference tasks, not including the cameras
used to capture the riding related video frames. We evaluate
the feasibility of the three off-the-shelf pose estimation mod-
els in real-time authentication tasks on a resource-constraint
platform such as a Raspberry Pi. Therefore, we implement
multiprocessing for the pose estimation module to accelerate
the process. For MoveNet implementation on the Raspberry
Pi, we leverage the MoveNet.SinglePose.Lightning tflite model
[56] with a Coral Edge Tensor Processing Unit (TPU) [57].
Alongside TPU, multiprocessing plays a significant role in
maximizing CPU utilization for highly optimized models like
MediaPipe and MoveNet. The presented results (in Table II)
are averaged over 50 authentication runs.

TABLE II: Resource Consumption of ScooterID models infer-
ence on Acer Aspire A515-46 Laptop and Raspberry Pi 4.

Acer Aspire Raspberry Pi 4
Model Time (ms) Energy (mJ) Time (ms) Energy (mJ)

MediaPipe 46.5 262 103.3 297
MoveNet 39.9 333 91.1 391
Yolov7 177.8 1785 1320 5623

GCN+Encoder 73.8 766 124 570

In Table II, the time column refers to the time consumed
by each of the three pose estimation models for processing
one video frame. For the GCN+Encoder, we measure the
time required to generate an embedding from an input sample
(a keypoint coordinates segment). As we can see, MoveNet
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is the fastest option for pose estimation in both the laptop
environment (39.9ms) and the Raspberry Pi environment
(91.1ms), with less than 100ms per frame on the Raspberry
Pi 4. While MediaPipe is slightly slower than MoveNet, it
causes less energy consumption on both platforms (262mJ
and 297mJ respectively). A higher ratio of time versus energy
consumption indicates that MediaPipe is the most energy
efficient out of the three pose estimation models. Yolov7
is significantly more time and energy consuming than the
other two models. The GCN and encoder implementations are
sufficiently efficient, with execution times of 73.8ms on the
laptop and 124ms on the Raspberry Pi, respectively.

TABLE III: Total Power Consumption of ScooterID on Rasp-
berry Pi 4 with Camera

Video ScooterID ScooterID ScooterID
Capture (MoveNet) (MediaPipe) (Yolov7)

Power (W ) 4.0 6.4 4.9 5.0

We also evaluate the total power consumption including
the part from the camera capturing video frames. Table III
shows the total power consumption experiment results of
ScooterID on a Raspberry Pi 4 and the web camera. The
power consumption of camera for video frame capture is 4.0
watts, while the ScooterID models (including both pose esti-
mation and authentication inference) consume slightly more
power, i.e., 6.4 watts, 4.9 watts and 5.0 watts respectively
for MoveNet, MediaPipe and Yolov7. We observe a notable
increase in energy consumption when a TPU is added for
running MoveNet.

G. User Behavior Variability

Mobility scooter riders typically have progressive medical
conditions such as stroke or neuropathy, oftentimes with im-
pairments in upper extremities, which may cause variability in
their upper-body postures. Next, we study how behavior vari-
ability of mobility scooter riders can affect the performance
of ScooterID and determine the need for periodic authen-
tication re-enrollment (i.e., updating registration embedding
using new video segment samples). We randomly select five
senior participants from the 35 volunteers and conduct a 20-
week long longitudinal study. Each participant has two riding
sessions. During the first session, participants are enrolled with
ScooterID and registration embeddings are generated using
video samples from their rides during the session. The second
session is 1, 5, or 20 weeks after the first session and differs
for each participant - participants P1 and P2 participate in
the second session 1 week later, participant P3 participates 5
weeks later and participants P4 and P5 participate 20 weeks
later. We test the average AUCROC and EER in the second
session while using the old registration embeddings gathered
in the first session. The results for these tests are outlined in
Table IV.

From these results, we notice that when test sessions are one
week later from the time of enrollment, ScooterID continues
to achieve high accuracy as seen in Table IV. However, not
surprisingly, when the registration is done 5 or 20 weeks
earlier than the test session, the accuracy in terms of AUCROC

TABLE IV: Average AUCROC and EER values when using
old registration embeddings.

Time Apart 1 week 5 weeks 20 weeks
Participants P1 P2 P3 P4 P5

AUCROC 0.980 0.887 0.458 0.550 0.882
EER 0.142 0.235 0.540 0.448 0.116

TABLE V: User Identification True Acceptance Rate of
ScooterID with Varying Numbers of Enrollment Samples

Pose Number of Enrollment Samples
Option 1 5 10 20 40

MoveNet 0.961 0.953 0.957 0.958 0.956
MediaPipe 0.791 0.771 0.797 0.785 0.78

Yolov7 0.941 0.941 0.959 0.945 0.949

and EER detiorate significantly, atleast for some participants.
Different levels of accuracy are obtained for P4 and P5
(0.55 AUCROC vs 0.882 AUCROC), although both are using
registration embeddings that are 20 weeks old. This shows that
there is significant individual (riding) behavior variability in
the long term, which can impact the authentication provided
by ScooterID. These observations demonstrate the necessity
of periodic re-enrollment in ScooterID (i.e., collecting new
riding video samples to update the registration embeddings) to
guarantee accurate continuous authentication. ScooterID has
an advantageous design in this regard as it allows easy and
efficient re-enrollment enabled by the Siamese network design,
which does not require re-training of the embedding generation
model. The re-enrollment frequency can be dynamically deter-
mined based on a system- or user-defined accuracy threshold.

H. User Identification Performance

The user identification task is needed when a mobility
scooter is shared among group of users (e.g., family or in
a senior community), and driving information is only used for
personalized service and not for authentication. The test user
is identified as one of a group of users who has the lowest em-
bedding distance calculated by ScooterID. The group size is 5
in our tests. Table V shows the TAR values of ScooterID when
various enrolment sample sizes are used and different pose
estimation options are deployed. Overall, ScooterID achieves
high level of true acceptance rate with MoveNet and Yolov7,
in the range of 0.941 to 0.961. However, MediaPipe is out-
performed in these tests for the user identification task with
TARs under 0.80. The results are obtained as an average of
1000 tests per model across the high performance variation of
each model.

V. ScooterID ROBUSTNESS

Next, we evaluate the robustness of ScooterID against adver-
sarial threats. We specifically focus on two adversarial goals:
(i) getting authenticated as a legitimate user, and (ii) preventing
legitimate users from being authenticated. For accomplishing
the first goal, we assume that the adversary attempts to carry
out a mimicry attack, which involves generation of a (riding)
video to mimic legitimate users. For the latter goal, the
adversary aims to carry out a denial-of-service attack, which
involves video manipulation to prevent legitimate users from
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(a) Generative videos (b) Perturbed keypoints (c) Missing frames

Fig. 12: Authentication success rates of ScooterID under adversarial conditions.

getting authenticated. We measure ScooterID’s robustness un-
der these two types of attack scenarios using the metric of pass
rate or success rate, which denotes the proportion of samples
identified as belonging to an enrolled legitimate user in the
system.

Mimicry Attacks: For these attacks, we assume that
the adversary has a few images of legitimate users (riding
the scooter) and can query the ScooterID model with engi-
neered/doctored videos of legitimate users, generated using
open-source or proprietary generative AI tools such as Gen-2
[58] and Stable Diffusion [59] in order to be authenticated as
a legitimate user in the system. For our attack experiments,
we use one randomly sampled video frame of a legitimate
user driving a mobility scooter as the starting frame for the
prediction, along with a text description of the intended driving
behavior to generate a 16-second video using Gen-2 [58].
In total, we generate 21 such fake videos, test the average
video segment pass rate varying the classification cut-offs and
compare it with the pass rate of real video segments of the
same legitimate user. Figure 12a shows that the generated
fake video segments are rejected with a probability of about
60% at the distance cut-off achieving the EER, whereas the
real video segments from the registered user are rejected
with a probability of only about 2%. This shows that overall
ScooterID is reasonably resistant to mimicry attacks using
videos created by state-of-the-art generative models. The false
pass rate may be improved by incorporating of robustness
against diffusion-model-based mimicry attacks into the model
design. We leave it to the future work.

Denial of Service Attacks (Videos): In this attack scenario,
we assume that the adversary who intends to reduce the
efficacy of ScooterID may have access to the input videos. The
adversary is assumed to be capable of: (i) replacing the original
video (file) with a modified video, and/or (ii) injecting adver-
sarial perturbations into the live video feed deployment. Given
that identification/authentication is real-time and continuous in
nature, the adversary may choose to adopt standard pixel-level
or temporal perturbations to the legitimate user videos. We
attempt to mimic the adversary by applying Gaussian noise
and adversarial snow to videos related to four different tasks
encompassing track driving, road driving, off-road driving,
and acceleration testing. The adversarial samples are then
tested using ScooterID and are found to have minimal impact
on authentication results, with the adversarial modifications

leading to a sub-1% average decrement in true positive rate
(success rate). The finding shows that ScooterID is robust
against standard noise perturbations to the input videos.

Denial of Service (Keypoints): Here the adversary may
have access to the keypoint data, rather than video data.
To mimic the adversary, we simulate both the addition of
Gaussian noise directly to all the keypoint coordinates, and
randomly removing some frames’ keypoint data (frame drop-
ping). We replace keypoint coordinates of dropped frames
with those from the most recent remaining frame, so that the
amount of temporal information in coordinates data is reduced
while the sequence length remains the same. Figure 12b shows
the success rate of authentication, when Gaussian noise with
different variances is directly added to the coordinates data.
We note that ScooterID is robust to Gaussian noise up to 0.1
variance with 0 mean on data normalized between 0 and 1.
Figure 12c shows that ScooterID demonstrates high robustness
to dropped keypoints coordinates with success rates in between
75%-90% regardless of frame drop rates.

VI. DISCUSSION AND LIMITATIONS

Impact of Environmental Conditions. Due to limitations in
the permitted testing environment, ScooterID has not been
tested in all possible environments that mobility scooter riders
may encounter, for example in low-light, or foggy conditions
or on very rugged landscapes. In these cases, ScooterID’s
performance is associated with the robustness of the human
pose estimation models that we apply. Although MediaPipe,
Yolov7, and MoveNet models were not trained or tested with
data from all possible environmental conditions, there are
robust transformer-based human pose estimation models (e.g.,
[60]–[62]) which have been tested using datasets with diverse
backgrounds and environmental conditions such as MPI-INF-
3DHP [63]. Applying these human pose estimation models
in ScooterID could potentially improve the robustness of the
system in diverse backgrounds and environmental conditions,
but may downgrade the efficiency when ScooterID is run on
resource constrained devices. Also, as mobility scooters cannot
be safely driven on muddy or off-road terrains, we do not
consider riding on such terrains in our tests. Scenarios to con-
sider for testing our scheme’s robustness would include sloped
pavement and transitions from sidewalk-road at intersections,
both of which we have collected as part of our dataset.
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Completeness of Keypoints in Frame. In certain riding
postures, not all keypoints will be in the frame of the cam-
era, leading to several underdetermined key point locations.
This concern is especially common with wrist keypoints, for
example, when riders recover from stroke and only use one
hand to hold the handle. We have included such driving
patterns in the training dataset to ensure model performance
despite missing keypoints. To address the longer absence of
keypoints, ScooterID interpolates linearly from prior keypoint
data to predict the current keypoint location. This interpolation
procedure will likewise occur for cases where keypoints are
occluded, such as if a user reaches into their pocket. However,
with substantial and consistent omissions, it can lead to a
degradation in performance due to the interpolation error.
This issue can be addressed by employing a camera with
a smaller focal length for a wider camera angle. As pose
detection models have been trained to varying focal lengths
and have normalized output, this will not cause issues in the
ScooterID pipeline.

Camera Position and Angle Uncertainty. During riding, it
is possible for camera to drift in position or angle. In addition,
when users need to charge the camera and repeatedly remove
it from the mount, we anticipate that in some cases the user
may not properly secure the camera. For slight shifts that lead
to occasional out-of-frame keypoints, the same interpolation
procedure described above will estimate missing data. For sig-
nificant drifts, a function can be added to the ScooterID system
which can alert the user that the majority of keypoints are
no longer in the frame and cease identification/authentication
temporarily until the matter is addressed.

Privacy Concerns. Despite our intent not to capture facial data
through the camera, this is not always avoidable. However,
ScooterID is designed to process data captured by the camera
immediately on a local device such as a Raspberry Pi and
convert them into keypoint coordinate data. All stored data
on local devices is either the keypoint coordinate data or
the embedding vectors extracted from the posture data. The
accidentally captured face information from riders getting on
or off the mobility scooters or adjusting their sitting positions
will not be saved. Thus, even with full access to the models
employed and data stored, an attacker would be unable to
reconstruct users’ facial information. Obtaining the originally
captured videos requires physical access to the camera or local
computing devices, which is not practically feasible for the
adversary [64].

Re-enrollment after Prolonged Periods. Over a prolonged
period of time, it is possible that patient movement and posture
patterns will change. However, for frequent users of ScooterID,
after we have performed authentication, we can sample a small
set of embeddings after each ride to use to refresh the existing
enrollment embeddings. In doing so, we can ensure that,
over a shorter period, the enrollment samples are completely
refreshed without any intervention by the user. If the user
experiences a sudden shift in riding pattern or has a prolonged
period without using the mobility scooter, the user can opt to
re-enroll.

VII. CONCLUSION

This paper proposes a new deep learning based contin-
uous user identification and authentication framework for
mobility scooter riders, called ScooterID. ScooterID utilizes
only videos of users’ upperbody movement while riding the
mobility scooters to create a rider embedding and performs
user identification/authentication by checking the distance
between the registered embedding(s) and the one most re-
cently computed (for the identification/authentication task).
Our proposed deep learning model leverages spatio-temporal
graph convolutions before a hierarchical encoding structure to
produce embeddings and is trained with a Triplet Metric Loss
function. Our comprehensive experimental results, using real
mobility scooter riders’ data, show that ScooterID achieves
high levels of accuracy and efficiency, and demonstrates sig-
nificant advantages compared to other architectures.
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