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Abstract

The bloom filter is an efficient and probabilistic insertion-only data 

structure for testing set inclusion that offers improved run time and  

lower memory at the cost of occasional false positive queries. As 

false positive rate directly correlates with the number of insertions 

into the filter, learned models [1] have reduced insertions by training 

a classifier to identify whether x in the set, with the bloom filter 

acting as simply an overflow buffer for keys the model incorrectly 

classifies. Yet the classical method of training filters [1,2] cannot 

handle distribution shifts, offers “over-eager” estimations of the true 

key space, and requires distribution knowledge that may be simply 

unavailable. We leverage key embeddings to produce an 

unsupervised streaming algorithm with suitable guarantees and 

consistently high performance despite distribution shifts. 

Approach

We provide a function class and streaming update mechanism enabling unsupervised learning of the key space

1. Map to semantic embeddings to detect general patterns in filter inserts and JL transform to reduce dim.

2. Determine the likelihood the key belongs to an existing cluster or cluster set, representing a pattern.

3. Expand the cluster to optimize density or consider adding an additional cluster to combat shifts.

Evaluation

Training Data

Since Bloom Filters do not 

store keys, training f on the 

key-distribution is 

practically difficult.

Distribution Shift

If we adapt f to f*, we 

require f(x) > t => f*(x) > t,

which can typically not be 

ensured.

Over-Eager

How can we model complex 

key distributions with static 

and constant-size space-

partitioning models?

Unstandardized

Requires data scientist to 

provide model, tune 

parameters and maintain.
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Figure 1: Algorithm Overview  
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Introduction

• Bloom Filter:

▪ Init(M, k): m = [0] * M, h = [new_hash_function() for _ in k]

▪ Insert(key): m[h[i](key)] = 1 for i in range(k)

▪ Query(key): return all(m[h[i](key)] == 1 for i in range(k))
   

• Learned Bloom Filter:

▪ Init(M, k, f, t): bf = BloomFilter(M, k)

▪ Insert(key): if (not f(key) > t) bf.insert(key)

▪ Query(key): return f(key) > t or bf.query(key)

LBF Limitations:

  

 

 

We provide an algorithm that carefully learns a continuous function E(x) (or E(x) – p(x) to account for priors) 

via joint energy-based modeling. Inspired by Gaussian Splatting [3] and Gaussian Mixture Models, we learn 

monotonically by adding and enlarging Gaussian fields, providing monotonic function updates to maintain 

0% FNR. For each Gaussian/cluster, we perform an exponential search to optimize covariance without pre-

existing distribution information and maintain O(log(n)) clusters, adapting quickly to O(n) distribution shifts.
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Figure 3: Many algorithms vastly over-represent the key-space based on limited 

training and challenging evals., leading to higher risk during distribution shifts.

Figure 4a: FPR varying with total bloom filter memory for different bloom filter 

models under a workload involving insertion of a shifted key distribution with k = 4

Figure 4b: Under a simulated workload with mixture of Gaussian key patterns, 

modeling the heavy-insertion of a few topics, our filter handles dist. shifts and even 

pre-shift matches the performance of other techniques that leverage dist. knowledge.

Figure 2: The formation and reinforcement of a new pattern across n = 1 to 500 inserts
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