
Truly Adaptive Bloom Filters with Monotone Streaming Updates

Devan Shah David Yan

Abstract

The bloom filter is an efficient and probabilistic insertion-only data

structure for testing set inclusion that offers improved run time and

lower memory at the cost of occasional false positive queries. As

false positive rate directly correlates with the number of insertions

into the filter, learned models [1] have reduced insertions by training

a classifier to identify whether x in the set, with the bloom filter

acting as simply an overflow buffer for keys the model incorrectly

classifies. Yet the classical method of training filters [1,2] cannot

handle distribution shifts, offers “over-eager” estimations of the true

key space, and requires distribution knowledge that may be simply

unavailable. We leverage key embeddings to produce an

unsupervised streaming algorithm with suitable guarantees and

consistently high performance despite distribution shifts.

Approach

We provide a function class and streaming update mechanism enabling unsupervised learning of the key space

1. Map to semantic embeddings to detect general patterns in filter inserts and JL transform to reduce dim.

2. Determine the likelihood the key belongs to an existing cluster or cluster set, representing a pattern.

3. Expand the cluster to optimize density or consider adding an additional cluster to combat shifts.

Evaluation

Training Data

Since Bloom Filters do not

store keys, training f on the

key-distribution is

practically difficult.

Distribution Shift

If we adapt f to f*, we

require f(x) > t => f*(x) > t,

which can typically not be

ensured.

Over-Eager

How can we model complex

key distributions with static

and constant-size space-

partitioning models?

Unstandardized

Requires data scientist to

provide model, tune

parameters and maintain.

JL & Allocate to ClustersSemantic Embedding

Updating Adaptive Model

Figure 1: Algorithm Overview

Update or Add Clusters

ds6237@princeton.edu yan.david@princeton.edu

Introduction

• Bloom Filter:

▪ Init(M, k): m = [0] * M, h = [new_hash_function() for _ in k]

▪ Insert(key): m[h[i](key)] = 1 for i in range(k)

▪ Query(key): return all(m[h[i](key)] == 1 for i in range(k))

• Learned Bloom Filter:

▪ Init(M, k, f, t): bf = BloomFilter(M, k)

▪ Insert(key): if (not f(key) > t) bf.insert(key)

▪ Query(key): return f(key) > t or bf.query(key)

LBF Limitations:

We provide an algorithm that carefully learns a continuous function E(x) (or E(x) – p(x) to account for priors)

via joint energy-based modeling. Inspired by Gaussian Splatting [3] and Gaussian Mixture Models, we learn

monotonically by adding and enlarging Gaussian fields, providing monotonic function updates to maintain

0% FNR. For each Gaussian/cluster, we perform an exponential search to optimize covariance without pre-

existing distribution information and maintain O(log(n)) clusters, adapting quickly to O(n) distribution shifts.

Eagerness

Evaluations

References

[1] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The Case for Learned Index

Structures. In CoRR, volume abs/1712.01208, 2017. URL http://arxiv.org/abs/1712.01208.

[2] Zhenwei Dai and Anshumali Shrivastava. Adaptive Learned Bloom Filter (Ada-BF): Efficient

Utilization of the Classifier. In CoRR, volume abs/1910.09131, 2019. URL: http://arxiv.org/abs/1910.09131.

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splatting for

Real-Time Radiance Field Rendering. In ACM Transactions on Graphics, volume 42, number 4, July 2023.

URL: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting.

Figure 3: Many algorithms vastly over-represent the key-space based on limited

training and challenging evals., leading to higher risk during distribution shifts.

Figure 4a: FPR varying with total bloom filter memory for different bloom filter

models under a workload involving insertion of a shifted key distribution with k = 4

Figure 4b: Under a simulated workload with mixture of Gaussian key patterns,

modeling the heavy-insertion of a few topics, our filter handles dist. shifts and even

pre-shift matches the performance of other techniques that leverage dist. knowledge.

Figure 2: The formation and reinforcement of a new pattern across n = 1 to 500 inserts

COS
598D

	Slide 1

