
Truly Adaptive Bloom Filters with Monotone Streaming Updates

Devan Shah
Princeton University

David Yan
Princeton University

Abstract

The bloom filter is an efficient and probabilistic insertion-only
data structure for testing set inclusion that offers improved
run time and lower memory at the cost of occasional false
positives queries, i.e., falsely returning that an element
is in the set. As the false positive rate directly correlates
with the number of insertions, prior works [2, 6] leverage
patterns in the inserted data to limit insertions in an
underlying bloom filter, leading to dramatic performance
improvements. However, typical applications of Bloom
Filters, such as to content caching, malicious URLs, or
checking redundant usernames, have high potential for
distribution shifts, leaving models learned on initial data
distributions irrelevant, or possibly detrimental, for future
inserts or queries, dramatically degrading performance.
Typical solutions for model adaption, such as continuous
fine-tuning, training supplementary models, or retraining
under model degradation, are not applicable to the bloom
filter setting due to the unique guarantees required for the
model updates. Moreover, in many settings, there are no true
negative labels, rendering conventional training techniques
impractical and prone to misleading models. In addition, we
show existing model classes used to create learned bloom
filters may be overeager, prone to over-classifying the key
space leaving them especially vulnerable to distribution shifts
and with a high attack surface, rendering the systems inenept
for many use-cases.

To address these issues, in this work we introduce Tru-
Adapt, a classification model for the Learned Bloom Filter [6]
providing:

1. A novel adaptive bloom filter system that learns under-
lying distributions with ordinary filter use and handles
distribution shift to reduce FPR without any initial dis-
tribution knowledge and with O(log(n)) performance.

2. We illustrate that existing learned bloom filter ap-
proaches, despite leveraging data distribution insights,

are over-eager in their modeling leaving them vulnerable
to high FPR upon distribution shifts.

3. We provide algorithmic guarantees for performance in
addition to rigorous evaluations on realistic workloads.

4. We provide a lightweight algorithm with minimal hyper-
parameters and no domain expertise required, ensuring
convenient maintenance and satisfactory performance.

5. We ensure that our provided solution can be used to
extend existing classifiers into adaptive classifiers if there
are existing accurate key-distribution models.

1 Introduction

1.1 Learned Bloom Filters

The bloom filter offers an efficient data structure for testing
probabilistic set inclusion. For many workloads, the under-
lying set is only added elements, and developers would be
willing to allow occasional false positives in return for in-
creased performance. The bloom filter offers a data structure
with this trade off and are commonly employed in conjunc-
tion with more complicated systems to avoid more expensive
operations, such as cache reads for an item not in the cache.

The bloom filter on M bits is implemented with a bit ar-
ray m ∈ {0,1}M , initialized to m = 0⃗, and k hash functions
h1,h2, . . . ,hk which map to {0, . . . ,M − 1}. For each added
key e, we assign m[hi(e)] = 1 ∀i. To query whether element
e is in the filter, we test whether m[hi(e)] = 1 ∀i. Clearly the
bloom filter cannot have any false negatives, but as the same
bits may be accessed and changed by multiple keys, it is pos-
sible for a non-key e all the required bits in m are set by other
keys, leading to a false positive. As each hash function ac-
cesses a point independently at random, the probability of a
false positive for any given key is (∑i mi

M)k, although note that
more hash functions increases the rate at which the underlying
table m fills.

For a bloom filter on M bits, with optimal choice of k and
a desired FPR rate of below 0.05, we may only insert M

5
items. However, for many bloom filter use cases, we may
be able to take advantage of the key distribution to reduce
inserts and thus improve filter performance. For instance, if
keys included most integers between 50 and 100 and a few
outliers, we could dramatically decrease filter utilization by
only inserting the exceptions into the filter and immediately
returning true for a query between 50 and 100. This maintains
no false negatives, although model mis-classifications (i.e. for
non-keys in [50,100]) could potentially lead to increased FPR.

More generally, Kraska et. al [6], consider the setting
where, based on prior filter queries, we have a training set
of keys and non-keys we can train a discriminator model
f on. Choosing a threshold τ ∈ [0,1], we only insert a new
key x into the bloom filter B if f (x)< τ and, when querying
inclusion for x, we return true if either f (x)> τ or the filter B
claims to contain x. As before, we can view f as a classifier
for x being in or out of the set, and B as an overflow buffer to
ensure the false negative rate is 0.

1.2 LBF Limitations

Kraska et. al’s [6] proposed Learned Bloom Filter (LBF)
offers considerable performance improvements over a tradi-
tional Bloom Filter, but assumes a powerful and static classi-
fier modelbased on an adequate training set. For many applica-
tions of bloom filters, as we do not store the queries and keys
for space efficiency, and so we do not have a large dataset of
labelled key and non-keys. Moreover, once we provide a func-
tion f for the Learned Bloom Filter, we struggle to change
the function f . This is as, for a new function f ∗, to ensure we
maintain a 0% False Negative Rate (FNR), there cannot be any
keys x such that f (x)> τ yet f ∗(x)≤ τ. Otherwise this key,
when considered by f would not be inserted into the underly-
ing filter, but f ∗ would expect it to be. However, as we cannot
store the set of keys x, we must ensure this invariant globally,
i.e., for input domain D for x ∈ D, f (x) > τ ⇒ f ∗(x) > τ,
which we reduce further to ∀x ∈ D, f ∗(x) ≥ f (x), a condi-
tion we refer to as "monotonicity" or "update monotonicity".
Traditional model families and function classes are unable to
provide such function updates.

Kraska et. al. and later authors [2] train random forest dis-
criminator models and consider similar model classes. How-
ever, general space splitting models, and other common model
classes, such as neural networks, tend to over-eagerly approx-
imate the key distribution. As we explore later, training com-
mon models on low-dimensional realistic distributions can
lead to these models classifying half the input space as keys,
a vast over-estimate that would lead to terrible FPR perfor-
mance under a query distribution shift into the extended do-
main. In the high dimensional case, these issues persist but

Figure 1: Heat-map of TruAdapt learning a pattern via Gaus-
sian modeling over n = 500 inserts

would be challenging for a human evaluator to notice and
remedy, potentially leading to sudden performance decay that
cannot easily be addressed.

We introduce a custom model family and novel monotonic
streaming learning algorithm that leverage patterns in the
key embedding space to quickly adapt to distribution shifts
and avoid the "over-eager" approximations common to exist-
ing models. In cases where existing models provide strong
representations of the key distribution, our techniques can
be applied in addition to the existing models to render these
models adaptive.

In introducing streaming methods to handle distribution
shift and avoid "over-eager" generalizations, we mitigate the
pitfalls preventing learned bloom filters from achieving more
widespread industry use and provide improved performance
and easier implementation.

Our models f fundamentally approximate an energy func-
tion on the key-space via a set of Gaussian distributions,
which thus provides an estimate of the key-space by choosing
an appropriate threshold τ and considering {x∈D | f (x)> τ}.
Our choice of model design ensures the desired monotonicity.

We provide three systems that are variations on the same
core algorithm:

2

1. f models K via {x ∈ D | f (x)> τ} with O(log(n)) sym-
metric Gaussian distributions

2. f models K via {x ∈ D | f (x)> τ} with O(log(n)) gen-
eral Gaussian distributions

3. f models K via {x ∈ D | f (x) > τ} with O(1) general
Gaussian distributions

Where n refers to the amount of inserts. We note that
typically bloom filters offer O(1) evaluation, yet O(log(n))
grows sufficiently small such that the performance is
comparable to other learned bloom filters. Algorithm 1 and
algorithm 3 are modifications of algorithm 2 that provide
efficiency and memory improvements with empirically
similar performance, and thus most of our analysis be on
algorithm 2. These models are inspired by the success
of Gaussian Splatting in modeling complex 3D density
functions in computer vision [5] and by the success of
Gaussian Mixture Models, which have shown great success
in modeling complex distributions.

2 Problem Formalization

Let f ∈F represent the learned model, F represent the model
function class, S represent the true key set, B represent the
bloom filter, D represent the input domain, which we assume
to be bounded, K ⊂ D be the key-space, and σ : F ×D → F
be the function update algorithm given an insertion. We aim to
produce an algorithm with the high level structure equivalent
to that in Abstract Algorithm, which is the standard Learned
Bloom Filter outline with the addition of updates on line 7.

Algorithm 1 Abstract Algorithm
1: Insert:
2: if f (x)> τ then
3: exit
4: end if
5: if f (x)≤ τ then
6: x → B
7: f := σ(f ,x)
8: end if
9: Query:

10: if f (x)> τ or x ∈ B then
11: return True
12: else
13: return False
14: end if

Note that the Learned Bloom Filter discriminator learns
a distribution over the input space that approximately corre-
sponds to the probability an input is in the filter. With this
viewpoint, and as we are considering inputs in the embedding

space, our function f can be viewed as a Joint Energy-Based
Model [4], with E(x) defining the true energy function and
thus, for some τ, K = {x ∈ D | E(x)> τ}. We thus desire f
that provides an accurate continuous approximation of E(x).
As we have limited knowledge of E(x) and the true key space,
we instead consider f that minimizes:

L(f) =− 1
|S| ∑

x∈S
1[f (x)> τ]+α Ex∼Unif(D)[1[f (x)> τ]]

with α a weight impacting the contributions to the FPR from
the function compared to from a crowded bloom filter. This
loss function is also common in recommendation systems,
which have a similar challenge of modeling sparse "keys"
(user-object positive matchings) [3]. Note additionally that,
by scaling f , we can assume τ = 1. Moreover, as our eval-
uation of loss is entirely from 1[f (x) > τ], we can improve
performance and extend our effective function class by in-
stead directly modeling the regions E(x) > τ = 1, learning
instead the function find : D →{0,1}.

Additionally remark that if we have any prior knowledge of
the distribution, such as a model p(x), the function f and find
can be learned in order to adapt p(x) monotonically by model-
ing instead E(x)− p(x). Thus our approach can generalize to
cases where there exist a strong prior on the distribution, such
as if there already exists a strong model trained for an LBF
system. We thus enable adaptive properties for pre-existing
algorithms and allowing pre-existing models to adapt to a
shifted energy functions, maximizing ease of integration and
compatibility with existing learned systems.

3 Algorithm

3.1 Overview
For our algorithm, we make the assumption that x can be
mapped by an embedding function to a semantically mean-
ingful domain, which is true for many variable types, such
as words, images, and neural-net classifiable inputs among
others input types [4]. As bloom filter usage fundamentally
derives from human usage, we assume recognizable patterns
will occur at the semantic level. For the examples and dis-
cussion in [6], the assumptions made are similar in that the
authors expect "realistic queries" (emph. in original) [6].

Thus, patterns can be viewed as a high dimensional seg-
mentation, which may be conveniently representable as a
series of clusters, with inspiration of the success of Gaussian
Mixture Models in learning representations of complex dis-
tributions. Cluster-based models hold the advantage of being
easily-adaptable and offering increased guarantees through
greater interpretability.

To derive optimal model class for find , we will first consider
f . By the above, we will restrict to considering model families
containing functions of the form, f (x) = maxc∈C r(c,x), with
C a set of stored clusters and r(c,x) and evaluation between

3

x and cluster c (i.e. distance to center or likelihood of being a
member). 1

To learn find , is suffices to learn accurate rind(x,c) =
1[r(x,c) > 1]. Note that in fact many functions r, upon lin-
ear scaling, have equivalent level curves, and thus learning
optimal rind is equivalent to optimizing over r over several
function classes that have similar level curve properties.

As an example, for fixed function ℓ : D ×C → R and any
strictly increasing functions d1,d2 : R → R, ∃ω s.t. 1[ω ·
d1(ℓ(x,c))> 1] = 1[d2(ℓ(x,c))> 1], ∀x,c. Allowing ω to be
implicitly learned through cluster parameters of c, we have
that even optimizing rind over a simple function class can
learn powerful underlying representations of the data.

With this in mind, we choose to associate each cluster to an
ellipse and define rind(x,c) as whether x is in the ellipse corre-
sponding to c. Note that this definition of rind in fact includes
r which models a Gaussian distribution and indeed many
other distributions which have elliptic similarity. To ensure
monotonocity of find , we ensure that ellipses only increase
in each axis (radius) and that we never remove ellipses, only
adding them. Additionally, to improve ellipse learnability,
rather than considering general ellipses, we consider axis-
aligned ellipses.

3.2 Cluster Updating
How do we determine how to update the cluster set C . More-
over, as we assume no priors on the existing space, what are
effective methods and objectives to initialize and optimize the
clusters.

To minimize the given loss, we choose to optimize the
"density" of each cluster in the embedding space, aiming to,
given a central point, compute the most dense ellipse with
this center. Each key is modeled as having certain volume
to ensure the optimal ellipse is non-trivial, with the per-key
volume dependent on α in the loss function. We empirically
find that this objective of optimizing density, in high dimen-
sional space, leads to very conservative clusters, as increasing
the radius in multiple directions drastically increases the total
ellipse volume. However, we also find that multiple clusters
will emerge and grow sufficiently to adapt to patterns with
sufficient examples.

As TruAdapt receives new input keys in the embedding
space, the model classifies the key based on whether it is "in"
an existing ellipse, "close" to an existing ellipse (but not "in"),
or "distant" if sufficiently far from any ellipse. As we do not
know the true optimal cluster size, each ellipse will start small.
For close points to an ellipse, this indicates we may be able to
optimize density by increasing the ellipse radii in the direction
of the close point. We will add close points to the underlying

1I will note we assume the embedding space has been designed with Eu-
clidean Distance, but with sufficient normalization, the provided algorithms
will also work for other distances or similarity metrics, such as dot-product
similarity and cosine-similarity

bloom filter as they are not in any cluster and thus find will
mis-classify them. For "in" points, as find correctly classifies
them, we will not edit any ellipse or add them to the bloom
filter. For "distant" points, we will center an ellipse at that
key embedding with probability k

max(n,2|C |)
, with C being the

existing ellipse (cluster) set.
This choice of sampling ensures we expect approximately

O(log(n)) ellipses, which ensures we have insert and test per-
formance of O(embed_dim · log(n)). Also, for a new patterns
of size O(n), we expect to center an ellipse in that pattern
with high probability. Moreover, as empirically validated,
with proper classification of "close", we can ensure the el-
lipse grows only for sufficiently large patterns. These results
will be shown in the next section.

For "close" points, we update the ellipse axis radii in each
dimension by a multiplicative factor inversely proportional to
the relative density of that ellipse and inversely proportional
to the points’ deviation on that axis. Thus we optimize density
by expanding for nearby points while recognizing the existing
density relative to the surrounding space. This parameter is
especially important as ellipses are initialized with minimal
radii and thus, if there is a nearby pattern, the model will
notice many more "close" points than "in" points, indicating
the current radii are low. Thus, when we have few "in" points
yet many "close" points, we quickly increase ellipse radii in a
manner similar to exponential search on the radii, allowing
us to initiate each ellipse with minimal radii and the ellipse
will quickly find adequate radii for each dimension, searching
exponentially until the relative density increases. As a proxy
for inverse relative density, we maintain a running total of
"close" points compared to "close" and "in" points.

3.3 The Complete Algorithm
In the following pseudocode, we will consider x as the embed-
ding of the key. Additionally, note that dilation, rather than
being single value, gives maximal performance when repre-
sented as a function of the ellipse. Dilation corresponds to
how far from an ellipse we search for "close" points, and thus
we define dilation with exponential decay based on the ellipse
size to ensure larger ellipses search less far. Note that, for the
ellipse inverse density parameter (IR_density), as we discuss
above, this is simply the ratio of "close" points to "close" and
"in" points, which is maintained by the insert method, which
correlates with the key-point density in the surrounding space
compared to in the ellipse.

The programming implementation of this algorithm is in
python and assisted by the Scikit-Learn library [7] and the
BloomFilter implementation from [2]

3.4 Alternatives and Optimizations
In certain cases, such as for performance independent of n or
for increased throughput, we can provide modifications of the

4

Algorithm 2 TruAdapt
1: Class TruAdapt
2: Method __init__
3: Input: k, min_r, filter_size, hash_funct_num, p
4: Initialization:
5: C = [] //ellipses
6: filter = BloomFilter(filter_size, hash_funct_num)
7:
8: Method in_ellipse: rind
9: Input: x, ellipse

10: Return ∑i

(
xi−ellipse.centeri

ellipse.radiii

)2
≤ 1

11:
12: Method close_to_ellipse
13: Input: x, ellipse

14: Return ∑i

(
xi−ellipse.centeri

ellipse.dilation·ellipse.radiii

)2
≤ 1

15:
16: Method find
17: Input: x, dilation
18: Compute e∗ = argmaxe∈ellipsesrind(x,e,dilation)
19: Return rind(x,e∗,dilation),e∗

20:
21: Method insert
22: Input: x, key
23: Evaluate:
24: in_ellipse,e∗ = find(x)
25: if in_ellipse: end
26: filter.insert(x)
27: if not in_ellipse and close_to_ellipse(x,e∗) :
28: e∗.update(x)
29: else w.p k

min(n,2|C |)
: C .append(ellipse.init(x))

30:
31: Method query
32: Input: x, key
33: Return: find(x)0 or filter.contains(key)

Algorithm 3 Ellipse Class Definition
1: Class Ellipse
2: Attributes:
3: center, radii, IR_density
4:
5: Method __init__
6: Input: x
7: Initialization:
8: center= x
9: radii= [0.01, . . . ,0.01] //arbitrary small initiation

10:
11: Method update
12: Input: x
13: Evaluate
14: di =

(
xi−ellipse.centeri

ellipse.radiii

)2
, ∀i

15: radiii = radiii · (1+ γ · IR_density ·di),∀i
16: // γ = 0.61 determined empirically

above algorithm that provide O(1) insert and query or other
O(logn) models with modeling simplifications to improve
performance. One natural modification of the algorithm is,
rather than considering ellipses, we consider spheres, thus
storing fewer parameters per ellipse and simplifying update
and compute logic. As most of the computational cost is in the
in_ellipse method and the ellipse updates, this simplification
offers a significant run-time boost while preserving practical
modeling capacity.

An alternative algorithm can be used to ensure O(1) mem-
ory by ensuring we maintain a limited amount of clusters. We
may sample ellipse centers identically as before, but when the
amount of clusters reaches an upper bound, we cover the two
closest ellipses with a larger ellipse to ensure monotonicity
and decrease the ellipse count. However, for certain distri-
butions, even the two closest ellipses can be quite distant,
leading to subpar performance. In practice, as typically one
data pattern will be represented by several ellipses, it is these
ellipses which merge, which maintains accurate representa-
tions

An additional optimization we implement to improve
throughput is by transforming high dimensional inputs into
lower dimensional space. As we have no priors on the distri-
bution, we achieve this via the Johnson-Lindenstrauss trans-
formation on the embeddings [1]. We implement this opti-
mization for improved visualizations and to improve testing
speed.

3.5 Performance Guarantees

Theorem 1 (O(log(n)) Clusters). Given n inserts in the Tru-
Adapt algorithm, with probability 0.99, we will have at most
2k log(n) clusters, with k being the above sampling parameter.

For n inserts, listed x1,x2, . . . ,xn, consider for any r, the
amount of inserts between r and 2r − 1 inclusive. We will
aim to bound the maximum amount of new clusters created
from the inserts xr, . . . ,x2r−1. First, we suppose that all points
are "distant", as "close" and "in" points will not form new
ellipses.

Additionally, we will assume there have already been |C | ≥
log(2r−1) clusters, as otherwise we can simply consider the
subset of inserts from xr to x2r−1 that occur after this condition
has been met, which will lead us to consider fewer potential
inserts.

Thus, as 2|C | ≥ 2r − 1, for each considered insert xp for
r ≤ p < 2r, the probability of xp initiating a new cluster is
k
p . As p ≥ r, for each xp, the probability of a new cluster
initiated from xp is bounded above by x

r , and thus the expected
number of inserts is bounded above by r · k

r = k. As inserts
occur independently at random, we then have that by the
Chernoff bound, with Cr referring to the additional ellipses
from x1, . . . ,xr

5

Pr[|C2r−1|− |Cr−1| ≤ 2k]≤ e−k/3

Thus, if for any r, Cr ≥ log(2r − 1), we expect the num-
ber of inserts from r to 2r− 1 to be less than 2k with high
probability. As we can decompose x1, . . . ,xn into log(n/r)
sequences of the form xa, . . . ,x2a−1, we provide that, with
high probability via union bounding on the above probabil-
ity: |Cn| ≤ log(2r − 1)+ 2log(n/r)k +C for all r and thus
|Cn| ≤ 2k log(n).

Theorem 2 (O(log(n)) Clusters). For a new pattern of size
4.7n

k , TruAdapt initiates a cluster at a point in the pattern with
0.99 probability.

Let I ⊂ [n] be the index set containing 4.7n/k examples
of a given pattern. As inserts xi for i ∈ I are part of a new
pattern, while we have not initiated a new cluster in the region,
TruAdapt classifies each point at "distant". For TruAdapt to
not initiate a cluster in the pattern, each insert in xi for i ∈ I
cannot initiate a cluster despite being marked as "distant".
Distant points initiate a new cluster with probability at least
k
n . Thus the failure probability is bounded above by:(

1− k
n

)|I|
=

(
1− k

n

)4.7n/k

≤ e−4.7 < 0.01

4 Over-Eager Representations

Empirically we have determined an issue with the existing
methodology of constructing Learned Bloom Filters. The
authors in [2,6] leverage Random Forest models to power their
learned filters and consider other model classes, such as neural
network models. However, these models, when considering
the regions which exceed a threshold, often learn generous
space-partition schemes that over-classify the true key region
in the input space and render these models vulnerable to
distribution shifts. In specific, a query distribution shift into a
region incorrectly classified as containing keys can lead to a
high FPR.

We show empirically with real data sources that traditional
model architectures classify a significantly larger region of
the embedding space as a key than is needed, rendering these
models vulnerable to distribution shifts that now query non-
keys in this misclassified region.

We show in contrast that TruAdapt’s cautious model of the
key-space leads to conservative modeling that avoids much
of the "over-eager" misclassifications of common model fam-
ilies.

We believe the "over-eagerness" of common model classes
derives from the limited amount of true false negative train-
ing examples compared to the vastness of the input space.
Typically in training, the false negatives come from storing
negative queries, which is typically from a limited region of
the input space and requires significant overhead to acquire.

Figure 2: True Data Distribution

TruAdapt does not need negative samples due to its cautious
learning of the key distribution.

To demonstrate this feature, we embed the ImageNet class
and consider the performance of classifiers TruAdapt, a Ran-
dom Forest model, Gradient Boosted regression trees, and a
fully connected Neural Network with 3 128-parameter hid-
den layers and ReLU activation. TruAdapt is not given any
positive or negative test samples while the other models are
trained on 3612 examples, 25% of which are positive. The
bias towards negative examples is used to decrease the "eager-
ness" of these learned models, which we will still show are
"over-eager". TruAdapt learns via the 395 insertions. Note
also that, for visualization, we JL-project to 2-dimensions.

Figure 3: TruAdapt Heatmap Figure 4: Gradient Boost
Heatmap

Figure 5: Neural Network
Heatmap

Figure 6: Random Forest
Heatmap

6

Figure 7: FPR varying with total bloom filter memory for
different bloom filter models under a synthetic workload with
a distribution shift. Note: Ellipse refers to an earlier name for
TruAdapt

Note that in the other three models, despite the true distri-
bution only occupying a small region of the space, the learned
models classify sizable regions of the entire key-space as keys.
If the distribution of queries shifts to a over-eagerly classified
region, the models will have high false positive rate.

5 Evaluations

In our evaluations section, we benchmark our performance
against a Learned Bloom Filter (LBF) with a Random Forest
classifier and a standard Bloom Filter. We first tested on a
synthetic dataset of Gaussians in 10 dimensional space. The
initial distribution consisted of points in 10-D space drawn
from Gaussians of radii 1 with centers at 010, 1010, 2010,
and 3010. The first shifted distribution consisted of points
drawn from 10D Gaussians of radii 1 with centers at −1010,
−20010, −3010, and 5010, and the second from centers at
−4010,−7010,−8010, and 22410. For all models, we use k = 4
hash functions. As we insert the values, we measure space
usage for each of the filters. After inserting all of the values,
we sample values not in the filter to calculate the false positive
rate (FPR) curves against max filter size. Our filter has lower
FPR than both the LBF and standard Bloom Filter, as illus-
trated in Figure 7. Furthermore, we have comparable space
usage performance to a LBF in the initial distribution and
need only half the space of a LBF after the distribution shift,
as seen in Figure 8.

Next, we tested on embeddings obtained from real-world
ImageNet data.We obtained 512 dimensional embeddings by
removing the last layer of a pretrained ResNet18 model. Due

Figure 8: Under a simulated workload with mixture of Gaus-
sian key patterns, modeling the heavy-insertion of a few top-
ics, our filter handles distribtion shifts and even pre-shift
matches the performance of LBF. Distribution shifts occur at
3000 and 6000 key insertion, indicated by the dotted red lines.
Lower filter usage is better.

to the difficulty of visualizing data in high-dimensional space,
we JL transform our real-world data embeddings down to di-
mension 2 for our empirical evaluations. However, our method
generalizes to embeddings in higher dimensional spaces. We
let the dog class be the initial image distribution. As such, we
trained a Random Forest classifier images from the dogs class
as positive examples and images from the truck, fish, and
house classes as negative examples, where each class had 955
examples. For our test set, we chose a 395 images from the
original distribution (dogs) and created a distribution shift of
truck, church, and gas pump classes, each other 955 examples.
After inserting embeddings from the initial distribution into
TruAdapt, we plotted score heatmap for TruAdapt to visualize
the learned distribution, along with the true distributions of
the embeddings (Figure 9). Our method is able to adapt to
a distribution shift, unlike LBFs, while also not overeagerly
expanding in embedding space.

We then repeat the FPR and filter usage experiments on
ImageNet data. When testing the FPR rate, we sampled "not in
filter" points within a circle of radius 2 at centered at (−4,2).
We chose to sample these values because they fall outside
both the original and shifted distribution but are still relatively
close, which penalizes overeager learned distributions. As
seen in Figure 10, we have a significantly lower false positive
rate than both the Bloom Filter and the LBF. In fact, the
LBF often has worse performance than the Bloom Filter
due to false positives from an overeager learned distribution.
Moreover, we use 4.5x less space than an LBF and 7x less
space than a Bloom filter for a fixed insertion workload with a

7

Figure 9: The heatmaps on the left represent the learned dis-
tribution of our model, while the heatmaps on the right are
the actual frequency distribution of inserted keys. Our model
accurately expands and adapts to distribution shifts in inserted
keys.

distribution shift (Figure 11). As such, we have demonstrated
that TruAdapt has improved empirical performance over both
Bloom Filters and LBFs on both synthetic and real-world
key-insertion workloads. Without a distribution shift, we have
comparable performance to a standard LBF, and have vastly
improved performance when there is a distribution shift, due
to our non-eager learning process.

6 Conclusion

TruAdapt succeeds in producing adaptive models suitable
to the necessary guarantees of Bloom Filters and can adapt
other model classes in producing accurate models of a chang-
ing key distribution. The core advantages of TruAdapt lie
in its ability to adaptively model the key space with no pri-
ors: able to model an unknown distribution and applicable
to cases where training sets do not exist, as is common in
bloom filter workloads. Additionally, in its cautious model-
ing, TruAdapt avoids the pitfalls of many common model
classes, which produce an over-eager space representation,
rendering these classification models vulnerable to heavy key
misclassification in certain distribution shifts. Additionally,
we provide performance guarantees and propose optimiza-
tions and additional algorithms to handle varying performance
specifications. Lastly, we test TruAdapt with real data drawn
from ImageNet, validating the intuitive design nature with
impressive empirical performance.

Figure 10: FPR varying with total bloom filter memory for
different bloom filter models under a real-world image em-
bedding workload with a distribution shift.

Figure 11: Under a real-data workload of image embeddings,
TruAdapt (ellipse filter) out performs both LBF and a standard
Bloom Filter. Distribution shifts occur at approximately 350
insertions, but is less evident in the chart when compared to 8
because the distribution shift is not as drastic.

8

7 Collaboration Statement

Devan Shah worked on algorithm design, studying failures
such as "over-eagerness" in the LBF systems, and producing
the underlying algorithm for TruAdapt in addition to several
failed algorithms (e.g. the Semantic Hash filter). Devan
implemented the TruAdapt algorithm and designed the
optimization criteria in conjunction with literature from
streaming algorithms and recommendations systems. Devan
worked on model understanding from an intuitive and theo-
retical standpoint and led the paper writing and poster writing.

David Yan empirically validated the model on synthetic
and real datasets, studying representations and patterns in
common data sets for insights on model development and
accurate pattern modeling, produced figures to showcase
model performance and illustrate LBF shortfalls, led
experiment design and fine-tuned model parameters, such as
γ and the dilation function, through rigorous ablations and
extensive testing.

Of course, as we both worked in the same room together
during the duration of the project, many ideas and contribu-
tions are shared.

References
[1] CHEN, L. Johnson-lindenstrauss transformation and random projection,

2023.

[2] DAI, Z., AND SHRIVASTAVA, A. Adaptive learned bloom filter (ada-bf):
Efficient utilization of the classifier. CoRR abs/1910.09131 (2019).

[3] GOOGLE DEVELOPERS. Collaborative filtering, 2023.

[4] GRATHWOHL, W., WANG, K.-C., JACOBSEN, J.-H., DUVENAUD, D.,
NOROUZI, M., AND SWERSKY, K. Your classifier is secretly an energy
based model and you should treat it like one, 2020.

[5] KERBL, B., KOPANAS, G., LEIMKÜHLER, T., AND DRETTAKIS, G.
3d gaussian splatting for real-time radiance field rendering. ACM Trans-
actions on Graphics 42, 4 (July 2023).

[6] KRASKA, T., BEUTEL, A., CHI, E. H., DEAN, J., AND POLYZOTIS,
N. The case for learned index structures. CoRR abs/1712.01208 (2017).

[7] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V.,
THIRION, B., GRISEL, O., BLONDEL, M., PRETTENHOFER, P., WEISS,
R., DUBOURG, V., VANDERPLAS, J., PASSOS, A., COURNAPEAU, D.,
BRUCHER, M., PERROT, M., AND DUCHESNAY, E. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research 12
(2011), 2825–2830.

9

	Introduction
	Learned Bloom Filters
	LBF Limitations

	Problem Formalization
	Algorithm
	Overview
	Cluster Updating
	The Complete Algorithm
	Alternatives and Optimizations
	Performance Guarantees

	Over-Eager Representations
	Evaluations
	Conclusion
	Collaboration Statement

