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1 Abstract

As the paradigm in artificial intelligence shifts from
pre-training scaling laws toward test-time training
with RL, reasoning models have emerged as the
next frontier. Ever since the release of DeepSeek-
R1 (DeepSeek-AI et al., 2025), a growing trend
involves training on complex reasoning tasks with
verifiable outcomes (i.e. reward of 1 if the solu-
tion is correct and 0 otherwise, with simple for-
mat rewards). We make the observation that this
outcome-oriented reward paradigm is effectively a
goal-conditioned setup. Meanwhile, in the broader
RL community, recent self-supervised RL algo-
rithms have shown strong success on classical
goal-conditioned settings (Eysenbach et al., 2023),
where sparse reward only provides a single bit of
reward feedback for each trajectory. A core ques-
tion thus arises: given this quasi-goal-conditioned
paradigm in NLP, can these same goal-conditioned
self-supervised RL methods be used to advance
LLM reasoning?

2 Introduction

Large Language Models (LLMs) trained to rea-
son using reinforcement learning (RL) have led a
paradigm shift from pre-training compute scaling
to inference time compute scaling (DeepSeek-AI
et al., 2025; Muennighoff et al., 2025). The re-
ward models (RMs) that evaluate output quality
and guide training are therefore a critical piece of
modern reasoning model training.

Existing frontier reasoning models are predomi-
nantly trained with outcome-based reward models
(ORMs) that consist of a numerical verifier for com-
plex math and coding tasks (DeepSeek-AI et al.,
2025). The simplicity of the RM enables training
on large corpora of verifiable problems without re-
quiring any human feedback or labeling. However,
ORMs provide a sparse reward structure and only
provide feedback at the end of completions. Mean-

while, process reward models (PRMs) (Lightman
et al., 2023) solve this problem by giving feedback
at intermediate reasoning steps, thereby providing
a dense reward structure. However, PRMs either re-
quire human-annotated trajectories, which are not
scalable, or language-model based annotations that
are noisy.

Drawing from the success of contrastive repre-
sentation learning in traditional RL tasks (Eysen-
bach et al., 2023), we propose a novel technique
for the self-supervised learning of a contrastive
reward model, allowing the benefits of dense feed-
back signals while only requiring problems paired
with a numerical verifier for the training of both
the reward model and the reasoning model.

We test our approach on two leading open-
weight large language models, Qwen 2.5-7B (Yang
et al., 2024) and Llama 3.1-8B (Grattafiori et al.,
2024) on the game of countdown and investi-
gate the challenges of contrastive representation
learning for reward models. Code is available at
github.com/dshah02/ContrastiveReasoners.

3 Related Work

Reinforcement Learning for LLMs.
To ensure language models accurately follow the

preferences of users and can answer user queries
beyond responding with the most likely next to-
ken, language models often undergo reinforcement
learning-based post-training after self-supervised
training on a language corpus to align better with
human preference.

Language models can be treated as actors in a
Markov Decision Process, with the prior input con-
stituting their state and the choice of next token
being the relevant actions. To incentivize behavior
aligned with human desires, these language models
can then receive a reward corresponding to the qual-
ity of their outputs, and using traditional methods
from reinforcement learning, this reward can be
used to update the weights of the language model

https://github.com/dshah02/ContrastiveReasoners


to ensure better alignment with human feedback.

As human-provided grading is unscalable, the
most common approach for aligning language mod-
els is known as Reinforcement Learning from Hu-
man Feedback (Ouyang et al., 2022), whereby
human-annotated data on the quality of text, as
aligned with human preferences, is collected on a
wide variety of input text, and a separate reward
language model is trained to predict, for any piece
of text, the expected score it would receive from a
human annotator. By prompting the base language
model on a variety of queries, this reward model
can be used to provide feedback on the policy, and
when combined with Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), will lead to a
language model that retains the language knowl-
edge of the base pre-trained model while being
more likely to earn favorable scores from human
reviewers.

However, for questions with concrete verifiable
answers, such as mathematics and factual problems,
the reward signal does not need to be provided
from a reward model, but can instead be based on
whether the model correctly answered the ques-
tion. Shao et al. (2024); DeepSeek-AI et al. (2025)
showed that training a language model based on
this verifiable reward, leveraging Group Relative
Policy Optimization (GRPO) (Shao et al., 2024),
can lead to models with impressive performance on
complex tasks and lead to the emergence of reason-
ing behavior. However, note that as only a single
reward is provided per model completion, the afore-
mentioned reward techniques are extremely sparse
and thus perhaps computationally inefficient.

To provide greater signal, other practitioners em-
ploy process reward models, which aim to provide
a reward on each token generated rather than on
the entire completion (Nath et al., 2024). Although
this reward is more dense, it is also much more
challenging to train, as it can be difficult to evalu-
ate each new token without the knowledge of what
future tokens may be. PRMs currently require la-
beled output trajectories to train a reward model on
distinguishing which token-level outputs are more
likely to lead to a goal with the desired label (such
as "Correct"); however, training these PRMs proves
challenging as human-annotated reasoning trajec-
tories are costly to obtain and LLM-annotated data
is often faulty.

Contrastive Reward Models
Hejna et al. (2024); Nath et al. (2024) propose a

procedural reward model that, although requiring
human-labeled trajectories, provides a different ap-
proach to training procedural reward models based
on learning trajectory embeddings. Rather than
predicting a reward for each subset of text, Nath
et al. (2024) propose learning a feature embedding
ϕ from text to Rn that preserves that text gener-
ated from the same trajectory are likely to map
near each other. In this manner, a reward signal
can be provided at the token-level by determining
whether, at each step, the chosen action leads to
an embedding closer to the goal embedding, with
the goal embedding chosen as an average of the
embeddings of successful trajectory embeddings
during training.

Following (Nath et al., 2024), at a more tech-
nical level, with a dataset D of inputs x paired
with correct trajectories yw and incorrect trajecto-
ries yℓ, we will learn a reward function r(x, y) =
r′(ϕ(yT |y{0,...,T−1}, x)), consisting of ϕ : text →
Rn and r′ : Rn → R1. To learn the feature em-
bedding ϕ and reward mapping r′, we then aim to
minimize a combined loss LR + λLC , where

LR = − 1

|D|
E(x,yw,yℓ)∼D log(σ(r(x, yw)−r(x, yℓ))

incentivizes rewarding correct trajectories and

LC = E(x,y0,t,y
+
g ,y−g ) log

(
σ(f(x, y{0,...,t}, y

+
g )

1− σ(f(x, y{0,...,t}, y
−
g )

)
incentivizes the model to correctly embed trajecto-
ries in-progress near their end-state and away from
the end-state of other trajectories. The function
f(x, y0,...t, yg) is the cosine similarity between
ϕ(x, yg) and ϕ(x, y0,...,t), and y0,...t is a randomly
chosen prefix of y+g , while y−g is from a different
trajectory with the same prompt (Nath et al., 2024).

Countdown Task and LongProc
To measure reasoning performance on a ver-

ifiable task, we choose the countdown problem
(Ye et al., 2025; Yao et al., 2023). Each count-
down problem consists of a list of 4 numbers
and a target number to create based on those 4
numbers and the 4 basic arithmetic operations
+,−,×,÷. For instance, an example might be
[3, 5, 2, 6] with a goal of creating 8, and a correct
answer is (6−2)×(5−3). Another correct answer
is (6× 3)− (5× 2).



We leverage the LongProc (Ye et al., 2025)
countdown benchmark in order to construct ex-
ample problems and train our model. We consider
the easiest set of LongProc Countdown problems,
which predominantly consists of tasks requiring
addition and subtraction and can be solved by pro-
cedural generation software in less than 500 tokens.
Each prompt showcases an example of correctly
answering a countdown problem and a description
of how the model should attempt the problem.

The countdown problem has been used as a clas-
sic example of a reasoning task (Yao et al., 2023)
and harder examples can be quite challenging for
many people.1

As a reference for baseline model performance,
under the LongProc Countdown prompting method,
which has models attempt the problem via breadth-
first search with 500 tokens, Llama 3.1-8B (In-
struct) answers the easiest set of problems with 8%
accuracy and Qwen 2.5-7B (Instruct) achieves 32%
accuracy. For our testing, we permit the models
1024 tokens and modify the prompt, so although
our results are not directly comparable, this serves
as a baseline to gauge problem difficulty.

4 Approach

4.1 Contrastive Critic Design

Our primary goal is to train a critic model to under-
stand whether an intermediate state in a reasoning
trajectory is "on the right track" towards achiev-
ing the final goal. We want the critic to learn to
map (intermediate state, current action) pairs and
final goals into a shared embedding space. In this
learned space, the embedding of a state-action pair
that is part of a successful trajectory leading to a
specific goal should be "close" to the embedding of
that goal. Conversely, it should be "far" from em-
beddings of irrelevant goals or goals corresponding
to different problems. To achieve this, we employ a
contrastive training setup, specifically the InfoNCE
(van den Oord et al., 2019) loss. This approach
allows for dense feedback without requiring ex-
plicit step-by-step human labels, relying instead
on the final outcome and the trajectory structure.
Our design is also motivated by the work of (Nath
et al., 2024), although we strive to make our method
purely self-supervised.

1If you want to challenge yourself, try to make 20 from
[8, 3, 7, 6] or to find both ways to make 8 from [3, 4, 5, 7].

4.2 Text-based Critics

We experimented with several different critic model
architectures, as illustrated in Figure 1. Initially,
we attempted to train a model that would extract
embeddings from the text output of a given trajec-
tory. In this setup, we fine-tuned a small language
model, such as Rho-Math-1B (Lin et al., 2025),
to use as the critic model. We randomly sampled
some action A as a randomly chosen line within
the reasoning trace, and then considered the state S
to be the entire reasoning prefix that preceded that
line. The goals G were randomly sampled lines that
came after the action. We extracted the goal and
state-action embeddings from the activations of the
language model and trained it using a standard con-
trastive loss. The primary issue with this method
was that it had an extremely poor speed/accuracy
tradeoff. Even relatively small 3B models were
prohibitively slow at both train and inference time,
and smaller models struggled to learn any useful
signal at all.

4.3 Numerical Critics

As such, we switched to a lightweight, task-specific
architecture. We observed that the core task of
the critic model was merely to determine whether
some intermediate set of numbers X was “on-the-
right-track" to reach some goal set of numbers Y .
Instead of recovering embeddings from text con-
taining numerical values, we decided to directly
extract numerical values to use as inputs to our
critic model.

Our first revised architecture (Figure 1B) con-
sisted of digit embeddings layers that took in the
initial array of four numbers as the state S, a ran-
domly sampled intermediate array as the action A,
and a randomly sampled array that comes after the
action as the goal G. The state-action pair is passed
through a digit embedding and concatenated. The
concatenated vector is then passed through a multi-
layer projection head to obtain the state-action em-
bedding. Meanwhile, the sampled goal is passed
through a separate digit embedding to obtain the
goal embedding. With these two embeddings, we
train the network using the same contrastive loss.

This network was significantly faster to run due
to being under 1M total parameters and achieved
significantly better training accuracy. However, we
found that adding the critic model had relatively
little impact on RL training. By probing the critic
network with sample state-action goal pairs, we



Figure 1: Overview of the three critic model architectures explored. (A) Text-based Critic: Uses a language model to
extract embeddings from textual representations of state, action, and goal. (B) Numerical Critic V1: Employs digit
embeddings for an initial array (state), an intermediate array (action), and a future array (goal). (C) Numerical Critic
V2 (Final Architecture): Uses digit embeddings for an intermediate array (state) with the fixed final target value
serving as the goal. The sampling strategy for state-action-goal triplets is shown above each respective architecture
design.

found the network was not learning robust asso-
ciations between the action and the goal. Instead,
because the model had access to the initial set, it
was circumventing the difficult task of predicting
whether the intermediate action could lead to the
goal and instead only learning whether the future
sampled goal could be achieved with the initial four
numbers. However, this representation is almost
useless at inference time because the goal is always
achievable given the initial numbers by construc-
tion. In fact, when we visualized the critic model’s
goal embedding space, we found that it learned a
trivial even-odd partitioning of values (Figure 2).

To address this problem, we remove the initial
array as input and then fix the goal G as the final
target value, instead of randomly sampling a future
state (Figure 1C). This lets the model directly learn
representations from intermediate states for a single
target value, which is what we desire at inference
time. Intuitively, the model must learn whether
target value Z can be made from some intermediate
state [A,B,C] (or [A,B]). Visualizing the goal
embeddings space of this architecture reveals that
the model learns a far more informative distribution
of goals (Figure 3).

Figure 2: PCA visualization of the goal embedding
space for the first numerical critic. The critic learned a
trivial partitioning of values based on parity, indicating
it was not capturing the desired relationships for pro-
gressing towards the target value.



Figure 3: PCA visualization of the goal embedding
space for our second numerical critic. This architecture,
which uses the fixed final target value as the goal and
only intermediate states as input, learns a more informa-
tive and structured distribution of goal embeddings.

Figure 4: Training loss curve for the final critic model.
The contrastive loss steadily decreases over 240,000
training steps, indicating successful convergence of the
critic.

5 Experiments

5.1 Critic Model Training

We construct a large synthetic dataset of several
hundred thousand unique trajectories using Long-
Proc’s procedural data generator, which creates
step-by-step, natural language traces for the count-
down game that correspond to a simple depth-first-
search. We train our critic model on this synthetic
dataset for 240000 steps with a batch size of 16
state action pairs from different trajectories. Our
critic model successfully converges as seen in Fig-
ure 4. We visualize the effectiveness of the con-
trastive training by examining the cosine similarity
matrix of state-action versus goal embeddings for
a batch, as shown in Figure 5.

Figure 5: Heatmap of the similarity matrix between
state-action embeddings and goal embeddings for a
batch of 16 samples during critic model training. The
strong diagonal indicates that positive pairs (state-action
and goal embeddings from the same trajectory fragment)
have higher similarity than negative pairs, demonstrat-
ing the effectiveness of the contrastive learning objec-
tive.

5.2 LLM Training

We run Group Relative Policy Optimization
(GRPO) for the countdown task on Qwen2.5-7B
and Llama-3.1-8B-Instruct to evaluate our reward
model. We used the LongProc countdown dataset
for training data and the LongProc countdown veri-
fier for verification rewards. All models are trained
for 1500 steps. We first trained the baseline models
using only the verification outcome reward model.
The Qwen model achieves approximately an 80%
sucess rate. Meanwhile the Llama model strug-
gles, rising to around 75% success rate through a
less stable trajectory. This behavior is expected,
because Ye et al. (2025) observed that the base
Qwen model is much stronger at countdown than
Llama. As such, Qwen easily achieves a extremely
high success rate, while Llama suffers from higher
variability when learning due to its lower initial
capabilities and sparse reward feedback.

When training with our critic model feedback in
addition to the standard verification reward, we find
that Qwen’s performance slightly to around 70%
success rate while Llama decreases to about a 63%
success rate. However, we note that our critic did
slightly improve LLama’s training in the first half
of training. We hypothesize that the performance
drop is because the critic is somewhat noisy, which
might be a detriment once the model is at a suffi-



Figure 6: Group Relative Policy Optimization (GRPO) results on the countdown task for Qwen 2.5-7B (left) and
Llama 3.1-8B (right). Performance is measured by success rate over 1500 training steps. The graphs compare the
baseline model trained with only outcome-based rewards (GRPO Baseline) against the model augmented with our
contrastive critic model (GRPO + Contrastive Critic).

Figure 7: GRPO results on the countdown task for Qwen 2.5-7B (left) and Llama 3.1-8B (right). Performance
is measured by success rate over 1500 training steps. The graphs compare the baseline model trained with only
outcome-based rewards (GRPO Baseline) against the model augmented with Oracle critic feedback, where the
Oracle critic uses brute-force searching to reward the model only if it makes the perfect move. We note that over the
course of training, Oracle critic rewards increase, corresponding to the model’s improveds searching performance.



ciently high level of performance. This would ex-
plain why the Llama model trained with our critic
has slightly better performance early on, when
the noisy critic model is helpful, but ultimately
achieves a lower performance. These results, illus-
trated in Figure 6, suggest that our method might
be more promising and show better results on even
smaller base models that would otherwise be too
weak to have convergent/stable RL training.

We additionally experiment with an oracle critic
model that algorithmically computes whether the
goal state is achievable, instead of learning it con-
trastively. We observe that the Qwen model trained
with an additional oracle critic achieves better per-
formance than the baseline (90% vs 80%), which
further suggests that the noisy results of our trained
critic model contributes to the decline in RL per-
formance. The results of the experiments with the
oracle model are illustrated in Figure 7.

5.3 Tools
All experimentation was done in PyTorch (Paszke
et al., 2019) and our code-base is dervied from the
Unsloth Llama 3.1 GRPO notebook (Unsloth.ai,
2025) and LongProc’s countdown task code (Ye
et al., 2025).

6 Conclusion

We have demonstrated a proof-of-concept con-
trastive reward model that can aid RL training of
large language models on reasoning tasks. How-
ever, our method still faces several limitations.
First, our critic model architecture is task-specific;
ideally, the initial language model architecture
should be used for the most task flexibility given
sufficient compute. Second, we evaluate on a toy
reasoning task for which we can generate large
amounts of synthetic data for offline. A significant
challenge remains developing a technique to train
the critic model in conjunction with the base model
on online trajectories, which will allow this method
to be applied to a broader range of tasks.
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