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Abstract: This work surveys the 2017 paper "Why does deep and cheap learning
work so well" [21], by Henry W. Lin, Max Tegmark, and David Rolnick. We will
explore the connections between problems that deep learning can solve and the types of
problems that occur in the natural world, and we will reach model expressiveness results
motivated by results in physics and a study of Hamiltonians, low-degree polynomials, and
compositionality. Our exposition largely follows that in [21; 25], and along the way we
will provide a mathematical introduction and introduce relevant recent results.

Figure 1: Examples of the success of deep learning including at board games, speech
recognition, language generation, image captioning, self driving, and protein folding
[1; 2; 3; 12; 17; 22].
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1 Introduction
To put it simply, deep learning is incredible. Parameterized models have had great success
in tasks ranging from driving cars to generating text to generating videos [5; 6; 7], tasks
that involve a complex understanding of the world and, in some cases, such as self-driving
and drug discovery, exceed the capacity of a human [21].

Models for image identification and many common tasks can be successfully learned
with only a few hundred thousand to million parameters [16], yet there are more functions
from images to labels than atoms in the universe [21]. Even though million-parameter
neural networks can only represent an incredibly small fraction of the functions that exist
from images to labels, they are able to represent the functions we desire. As an arbitrary
functions is close to random noise, it is clear that the functions we care about have some
sort of structure. The fundamental question we arrive at is then: for the problems we care
about, what are the properties of the underlying systems, and why are neural networks
excellent at modeling systems with these properties?

2 Background

2.1 Neural Networks
Since the AlexNet model surpassed classical machine learning techniques in 2015 [8], deep
learning models have surpassed the performance of humans in many fields and are now
the norm for machine learning tasks. The most simple neural network, the feed-forward
neural network or multi-layer perceptron, models a target function with successive affine
transformations and non-linearities, as specified by the following equations:

f(x) = σLAL · · · σ2A2σ1A1x
Aix = Wix + bi

(1)

Where W and b are parameters learned by a gradient descent-based optimizer. The
value L is considered the depth of the network, with layers excluding the input and output
considered hidden layers. Generally, a machine learning practitioner will pick a depth L
and the hidden layer sizes, where the ith hidden layer is the dimension of the output of
f (i)(x) = σiAiσi−1Ai−1 · · · A1x. This information specifies the amount and size of each of
the W and b matrices. The function σ is a non-linear function, such as typically sigmoid
or relu, which are defined as follows:

ReLU(x) = max(0, x)

sigmoid(x) = ex∑
i exi

(2)

In the above expression, max is applied coordinate-wise and the exponential function
is applied coordinate-wise as well. For instance,

ReLU([2, −3, 4, −1]) = [2, 0, 4, 0]

sigmoid([2, −3, 4, −1]) = [e2, e−3, e4, e−1]
e2 + e−3 + e4 + e−1 = [0.26, 0.00, 0.72, 0.01]

(3)

To train neural networks, we specify a loss function, which measures how far the
prediction of our function is from capturing the true data. For a dataset of size n,
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D = (x, y)n
i=1 consists of n input-output pairs representing a dynamic we wish our neural

network to capture. In this case, a natural loss function may be mean squared error, as
defined below:

LW,b(D) = 1
n

n∑
i=1

(f(xi) − yi)2 (4)

Once we have computed the loss, we can then update the weights W, b to minimize
the loss. To do so, for each element pt of W or b, we find the updated weight pt+1 by
shifting pt in the direction that minimizes the loss, which is mathematically expressed as:

pt+1 = pt − η∇pL(D) (5)
It is thus important for the loss function and non-linearity to be differentiable so that

this gradient can be computed. We can then efficiently compute the gradients with the
back-propagation algorithm [19], and we update our weights by the above expression. The
above updating algorithm is traditional gradient descent, but there are many modifications
of it. For instance, some parameter update algorithms have a unique η per weight, an
adaptive η, only use a subsample of the data per step, or leverage gradient momentum
[18].

Figure 2: A schematic of a Feed Forward Neural Network showcasing an alternative
interpretation of Equation 1. The arrow between node i at layer ℓ − 1 and node j at layer
ℓ represents multiplying node i by W ℓ

ji and passing the value to node j. At each node, the
inputs are accumulated, the bias term bℓ

j is added, and the non-linearity is applied [15].

2.2 Deep and Shallow Neural Networks
Neural Networks with few hidden layers (generally L ≤ 3 and so one hidden layer) are
considered shallow whereas neural networks with many hidden layers are considered deep.

By the Universal Approximation Theorem, with reasonably chosen σ (such as ReLU or
Sigmoid), the shallow neural network f(x) = A2σ1A1x can approximate any continuous
function to arbitrarily small error if it has sufficiently large hidden dimension (i.e. the
dimension W1 projects to) [13].

However, in practice, the hidden dimension required to approximate desirable functions
by shallow neural networks is prohibitively large. Thus, it begets the question on why
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Figure 3: Performance of neural networks with 3̃500 parameters and different depth on
learning MNIST.

deep neural networks, those with many hidden layers, have drastically greater learning
power and more efficient representation than their shallow counterparts. More generally,
deep models solve challenging problems rather “cheaply”, solving problems with relatively
few parameters compared to the complexity of arbitrary functions on the data.

For example, when choosing a model architecture with 3500 learnable parameters
to recognize digits from the MNIST dataset, as shown in Figure 3, the deeper models
consistently outperform. As we will show, for a large class of problems, deep neural
networks are significantly more expressive than their shallow counterparts.

When considering deep learning architectures, we generally care most about the
following factors [21]:

1. Expressibility: What class of functions can this model express?

2. Efficiency: How many parameters/neurons/flops are required to approximate a
function?

3. Learnability: How quickly can we learn good parameters to approximate a function?

In this paper, as in [21], we will largely focus on the expressibility and efficiency of
neural networks.

3 Polynomials in networks and nature

3.1 Neural Networks representing polynomials
Deep learning networks are able to efficiently model polynomials. Restating the corollary
from [21],

Corollary: For any given multivariate polynomial and any tolerance ϵ > 0, there
exists a neural network of fixed finite size N (independent of ϵ) that approximates the
polynomial to accuracy better than ϵ. Furthermore, N is bounded by the complexity of
the polynomial, scaling as the number of multiplications required times a factor that is
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Figure 4: A continuous multiplicate gate from [21].

typically slightly larger than 4 [21].

As opposed to the Universal Approximation theorem [13], this result is in fact con-
structive. The following construction is from [21]. To prove the corollary, let us first prove
a helpful lemma [21]:

Lemma: Let f be a neural network of the form f = A2σA1, where σ acts element-
wise as a non-linearity. Let the input layer, hidden layer, and output layer have sizes
2, 4, and 1, respectively. Then, f can approximate a multiplication gate arbitrarily well [21].

Consider the Taylor Expansion of the non-linearity σ chosen:

σ(u) = σ(0) + σ′(0)u + σ′′(0)u2

2 + O(u3) (6)

Without loss of generality, let σ′′(0) ̸= 0 as, since σ is non-linear, ∃x s.t. σ′′(x) ̸= 0
and so we can leverage the bias terms in A1 to shift accordingly.

Thus note that:

m(u, v) = σ(u + v) + σ(−u − v) − σ(u − v) − σ(−u + v)
4σ′′(0)

=
σ′′(0)

2

(
(u + v)2 + (−u − v)2 − (u − v)2 − (−u + v)2

)
+ O(u3 + v3)

4σ′′(0)
= uv(1 + O(u2 + v2))

(7)

And thus m(u, v) provides a multiplicative approximation. Moreover,

lim
λ→0

m(λu, λv)
λ2 = lim

λ→0

1
λ2 · λ2uv

(
1 + O(λ2(u2 + v2))

)
= uv (8)

Thus, by scaling down the bias and weight terms in earlier layers (A1 → λA1) and
scaling up in subsequent layers (A2 → λ−2A2), we can achieve an arbitrarily strong
approximation for multiplication, as it shown in Figure 4.

It immediately follows that, for a monomial p(x1, x2, . . . ) = cxr1
1 xr2

2 · · · of degree d, we
can represent the monomial to arbitrarily high accuracy with a neural network with 2d
layers by sequentially composing the above multiplication gates. In fact, by parallelizing
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the multiplications, we can represent the monic polynomial with a neural network with
2⌈log d⌉ layers. As it would take a single additional layer to compose all the monic
polynomials, we thus have that a polynomial of degree d can be represented by a neural
network with 2⌈log d⌉ + 1 layers, and neurons linear in the amount of multiplications.

Thus, we have shown the corollary up to a constant factor, and we have that deep
neural networks can exactly represent polynomials if the depth is sufficient. Importantly,
we will now show that many problems in nature boil down to well-representing polynomials.

3.2 Polynomials in Nature
The following in this section is largely taken from [21]. First, note that by Bayes Thm.,
for data x, label y, and alternative labels y′ :

p(y|x) = p(x|y)p(y)∑
y′ p(x|y′)p(y′) (9)

Import terminology from physics, we will consider the Hamiltonian Hy(x):

Hy(x) ≡ − ln p(x|y)
µy ≡ − ln p(y)

(10)

In physics, the Hamiltonian refers to the energy of the state x given the parameter
y, whereas in machine learning it is more common to hear the term surprisal or self-
information [21]. In a sense, a large Hamiltonian corresponds to p ≈ 0 and thus we may be
“surprised” to see the event given a prior idea of the distribution. We can thus reformulate
Bayes Thm. as:

p(y|x) = 1
N(x)e−[Hy(x)+µy ] (11)

With N(x) defined as the normalizing term:

N(x) ≡
∑

y

e−[Hy(x)+µy ]
(12)

Finally, note that, leveraging the softmax function smax(y⃗) = ey⃗∑
i

eyi
and extending

H(x) = [Hy1(x), . . . , Hyn(x)], µ = [µy1 , . . . , µyn ], and p(y⃗|x) = [p(y1|x), . . . , p(yn|x)] to
compactify the vector operations, we reach the observation that Bayes Thm. is equivalent
to:

p(y⃗|x) = smax[−H(x) − µ] (13)
Thus, if we wanted a neural network to learn the prediction task, as smax is a common

final activation for neural networks, the remainder of the neural network needs simply to
learn the Hamiltonian, with µ learnable as a bias vector.

Critical Observation: “The Hamiltonians that show up in physics are not random
functions, but tend to be polynomials of very low order, typically of degree ranging from
2 to 4.” [21]
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Figure 5: The Ising Model (image from [9]). “For any two adjacent sites i, j ∈ Λ there
is an interaction Jij. Also a site j ∈ Λ has an external magnetic field interacting with
it. The energy of a configuration σ is given by the Hamiltonian function: H(σ) =
− ∑

⟨i,j⟩ Jijσiσj − µ
∑

j hjσj” [4]
.

Thus, if the critical observation is true, based on our prior observations on the power
of deep neural networks to represent polynomials, this is a strong insight onto why neural
networks are able to represent many of the systems in nature.

But why might this observation be true? [21]:

• The Hamiltonian of the standard model of physics particles has degree d = 4. As
does many approximations – Maxwell’s Equations, Navier-Stokes Equations, Alven
Equations, and Ising Models.

• For systems that can be studied perturbatively, Taylor’s Theorem suggests a low-
order polynomial expansion suffices.

• By the Central Limit Theorem, many limiting distributions are Gaussian, and thus
− ln(p) is quadratic.

• Maximum entropy distributions (i.e. Gaussian) tend to lead to polynomial Hamilto-
nians with low degree.

Another reason that Hamiltonians tend to be low-degree is for the reason of locality
– “things effect what is in their immediate vicinity” [21]. For many settings, i.e. Figure
5, principles of locality limit which variables can interact, often allowing us to bound a
Hamiltonian’s degree (in graph-modelable systems) by the amount of neighbors a vertex
can interact with.

Thus, as many Hamiltonians are polynomial, and modeling these Hamiltonians allows
us to model conditional distributions, much of the predictive power of neural networks
may arise from their predictive power on polynomial inputs.
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3.3 No Flattening Results
As important as showing the representative capacity of deep neural networks is showing why
shallow networks cannot achieve similar performance. By the Universal Approximation
theorem, shallow networks can represent arbitrary continuous functions arbitrarily well,
but the hidden limitation is they often need to be much wider to do so. This introduces
us to the field of no-flattening results, which showcase the parameter increase required
to represent the same function modeled by a deep neural network on a shallow neural
network.

Most notably, we have previously shown that deep neural networks can represent
polynomials efficiently. However, [21] proves the that “no [shallow] neural network can
implement an n-input multiplication gate using fewer than 2n neurons in the hidden layer,”
severely restricting the capacity of a shallow network to model a polynomial. For example,
a deep neural network can represent a degree 4 polynomial in 20 variables with 4 · 20 = 80
neurons, yet a shallow network would require 220 > 1, 000, 000 neurons. Thus, as we have
just shown the importance of modeling polynomials for modeling natural systems, this
provides a severe limitation in the capacity of shallow networks to do so.

4 Hierarchy and Compositionality
Critical Observation: Nature creates datasets compositionally and hierarchically [21].

4.1 Hierarchy
Many processes cannot be modeled with shallow dynamics but rather have more complex
hierarchical structure. For example, when writing an article, we are generating character
by character of course, but also sentence by sentence and idea by idea. Figure 6 [20]
showcases the decay in mutual information across distance in a variety of systems. In a
Markov model, a purely sequential system, information decays multiplicatively with each
step and thus exponentially in the system. However, we note that more complex systems,
such as language, the genome, and the Ising model show approximately linear decay.

Rather than viewing each of these systems as sequential, it is better to recognize the
hierarchical structure – as we can model every “step” on the hierarchy as contributing
a multiplicative factor of information loss, this system is better represented as having
O(log(n)) hierarchy, and thus elements distance n away have O(n) mutual information.

Deep neural networks excel at efficient information accumulation and hierarchical
processing. The convolutional layer, common in many image processing and prediction
tasks, enables efficient local accumulation with deep successive layers of convolutions [16]
accumulating information hierarchically. The ResNet architecture assembles exceptionally
long convolutional chains to take advantage of the hierarchical structure of images, and
1-dimensional convolution performs similar for sequences [16]. On the ImageNet task, [16]
trains convolutional models with up to 152 layers, seeing consistent improvement. In the
next section on compositionality, we will show examples of how deeper networks can learn
both hierarchical and compositional patterns in their deeper layers.
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Figure 6: Decay of mutual information (in bits per symbol) as a function of seperation
d(x, y) = |i − j| [20].

4.2 Compositionality
Inherent in hierarchy is often composition. For many generative processes in nature, we
can decompose them into a series of simpler steps [21]. In Figure 7, we can consider simple
example processes that illustrate the compositionality in question.

With complex processes decomposable into multiple simpler steps, it makes sense that
a model architecture with many layers, each of which could perform small non-linear steps,
would have powerful representative capacities. At the mathematical level, a deep network
could learn the minimal sufficient statistic for the Markov operator representing each step,
allowing a classification problem based on that generative process to be decomposed into
many steps, each effectively inverting the corresponding generative step [21].

Analyzing deep neural networks, they take full advantage of compositional learning,
with early layers accumulating information and building new features for subsequent layers
to process. For example, in a convolutional architecture like as discussed earlier, when we
visualize what features are learned at deeper and deeper layers, we notice a significant
hierarchy in complexity, with early convolutions acting as edge detectors and later filters
activated by successively more complex features, as is shown in Figure 8.

Another common architecture for classification and generative models is the transformer,
which powers much of the latest wave of generative technology such as Chat-GPT and
Dall-E [6], which consists of many successive attention and multi-layer perceptron layers.
At a base level, the attention module accumulates information and relevant context to
build a contextful representation of each token (word, grid of pixels, etc.) in the input [26].
The module itself is incredibly interesting and we point readers to [24] for more details.
When visualizing, in the BERT language model, what attention heads in subsequent
layers recognize, we can view a successive increase in the complexity of task, with early
attention heads attending to perhaps only the next token, and attention heads deep in
the model can attend to complex grammar [11]. Some examples of what the different
attention heads attend to are included in Figure 9.
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Figure 7: Causal hierarchy examples relevant to physics (left) and image classification
(right) [21].

So in deep neural networks, we view the benefits of compositionality in action, with
deeper layers able to attend to more interesting patterns due to the preprocessing of
earlier layers.

5 Discussion and Conclusion

5.1 Limitations
There are some limitations of the work in [21], and our discussion of the limitations
stems from the discussion in [21] itself. Most notably, [21] focuses on the efficiency and
expressibility of deep neural networks, but not the learnability of the functions at hand.
For instance, in the multiplication gate detailed in Figure 4, it may prove challenging
for a gradient descent based optimizer to learn λ and λ−2 for small λ, which is required
for the Taylor expansion-based approximation to hold. For example, in training such a
gate with the Adam optimizer, we were unable to learn better than λ ≈ 0.10. However,
we found that, with a slightly deeper network with 75 parameters, we were able to learn
multiplication well, and so we still agree that few-parameter learnable multiplication
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Figure 8: Images maximizing the first filters of each convolutional layers in VGG-M [23].

Figure 9: BERT attention heads that correspond to linguistic phenomena. The lines
correspond to the strength of the attention weight. These examples indicate how syntax-
sensitive behavior and complex grammatical reasoning can emerge in later layers of a
transformer neural network [11].
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Figure 10: Performance of Shallow vs. Deep multi-layer perceptrons, with a CNN
model and CNN ensemble as baselines. ShallowMimicNet is trained with teacher-student
distillation from a deeper network [10].

gates exist, but we believe more care should be given to whether certain gates are indeed
learnable.

As a separate comment, an important element of the polynomial argument is that
many hamiltonians are low-degree. Although we agree this is true, they are notably
only low-degree if you have access to the right variables. In many systems, you may not
have access to the ground-truth variables that govern the system, and instead the neural
network must learn a significantly more complex function. For example, if suppose you
wanted to predict crop growth, you could do so easily given the correct variables regarding
the soil quality and climate, but if you do not have access to that information, instead only
knowing how other crops grew in prior years, now the prediction task becomes significantly
more complex and likely requires a much more advanced model.

A related question to how neural networks can represent the functions we care about
is, even presuming the existence of good representations, how can training converge to
those representations when we are optimizing over a very high-dimensional parameter
space [14]. This still remains unsolved and ties into the following remark.

Since 2017, there has been reason to doubt that expressibility and efficiency are
the primary reasons that deep neural networks outperform shallow neural networks. In
[10], researchers show that shallow convolutional networks can approach and exceed the
performance of deep convolutional networks if the shallow networks are trained carefully
via distillation. The results of their experiments are shown in Figure 10. Thus, it suggests
that learnability of complex functions plays a critical role in differentiating shallow and
deep networks, and a more precise argument may be that, under the same learning
algorithm, shallow networks underperform deep networks, but this analysis will critically
rely on the learning algorithm at hand.
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5.2 Conclusion
Lin, Tegmark, and Rolnick leverage insight from physics and the phenomena underlying
the generative processes in nature to offer an explanation for why neural networks can
model the functions we, as practitioners, care about. From their results [21], the core
reasons that deep neural networks perform well can be summarized as:

• The probability distributions common in physics, as so in nature, are simple –
typically of the form p(x) = 1

N(x)e
h(x), where h is a low-degree polynomial.

• Neural networks (with any activation) excel at modeling polynomials.

• Most generative processes are hierarchical and compositional – and we can learn
information-maintaining inverses of these processes.

• Deep models are more expressive than shallow models via the no-flattening theorems.

Yet, there are still many questions on the success of deep neural networks, and a full
theory remains elusive. With a better understanding of why deep neural networks work
well, we can improve the models that currently exist. I look forward to future work that
continues questioning why neural networks work and perhaps with some insight into how
our cognition works as well.
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