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Abstract

When asked the same question many times, a large language model will
often respond similarly each time, not taking full advantage of the multiple
attempts. However, in some settings, such as code generation with unit
tests or proof generation in a formal verifier, the model only requires a
single correct answer out of any amount of tries to have adequately helped
the user. Often, it is acceptable to run a language model multiple times
if it increases the likelihood that the most common answer is correct. We
investigate a novel application of Mutual Information Skill Learning to
large language models, allowing users to ensure language model response
diversely by using different conditioning vectors z ∼ Z . This allows for
diverse, useful LLM responses without the need for domain-knowledge or
manually prompt engineering. We test our technique on GSM8K [2] and
a variety of large language models, finding small improvements across
some models on pass@k and consensus@k tasks. We also provide insight
into improvements needed for better performance.

1 Introduction

1.1 Context

Recent advancements in large language models (LLMs) have demonstrated their capabilities
across multiple domains, including on tasks involving reasoning steps [5]. However,
these models often exhibit limited output diversity across multiple trials—that is, they
will produce similar responses when prompted multiple times on the same task [14].
This output homogeneity presents a significant roadblock in the ability of models to
solve complex reasoning tasks, where exploring multiple solution paths greatly increases
the chance of arriving at the correct answer and reduces the likelihood that a single
hallucination ruins the reasoning chain.

Multi-Attempt Metrics. In particular, the evaluation of model performance on complex
reasoning or generation tasks has increasingly adopted metrics that take the best out of
multiple attempts, like pass@k and cons@k. These metrics help account for the fact that
for many verifiable problems, such as mathematical proofs or code generation, obtaining
a single correct solution across multiple attempts is sufficient, as it can be verified with
automated programs such as a compiler. For these tasks, the ability to generate diverse
and varied solutions increases the likelihood of exploring a correct reasoning path at least
once, even if all other attempts fail.

Several modern state-of-the-art problem-solving AI systems use this approach. For in-
stance, AlphaGeometry [18] leverages a pass@512 beam width to solve Olympiad-level
geometry problems, and AlphaCode [10] is effectively pass@timeout, generating hundreds
of thousands of candidate solutions and whittling them do the best ones. In common
chat models, GPT-4o [7] and OpenAI o1 [8] use pass@k metrics to evaluate both image
generation as well as math and coding abilities.

1.2 Challenges

Current Limitations. Currently, the best way to encourage greater diversity in model
responses across several trials is to employ different prompts for each trial [16]. For
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instance, for a challenging math problem, we may prompt the model to use algebra in one
trial, geometry in another, trigonometry in a third, etc. However, for more complicated
tasks, this approach requires advanced domain knowledge to determine which techniques
will be helpful and lead to qualitatively different responses. For example, we may not
know that algebra is irrelevant to this problem, or that geometry and trigonometry lead to
the same solution path.

Reasoning training algorithms such as Group Relative Policy Optimization (GRPO) [15]
have become increasingly popular for improving model performance. These algorithms
only require datasets of questions with easily verifiable answers to train high-performing
reasoning models [15]. Our technique is designed to complement such reasoning training
approaches, requiring only question-solution pairs with verifiable solutions. This limits
us for training the model on several different techniques to try each problem, as we do
not have access to the problem solving strategies for each problem—only the correct
answer. While current reasoning training incentivizes language models to learn problem-
solving strategies, it lacks mechanisms for encouraging models to develop multiple distinct
approaches, and this so far has been an underexplored area in current research.

Prior Work and Our Contributions. Prior methods [11] for improving pass@k per-
formance typically generate far more than k solutions and then filter down to the best k
candidates. This line of work is largely orthogonal to our research direction, as we do
not subsample model responses but instead aim to maximize the utility of each generated
solution through increased diversity.

In this work, we introduce novel reward techniques that specifically encourage lan-
guage models to learn diverse reasoning strategies during GRPO reasoning training.
We evaluate our approach on three leading open-weight models: Qwen 2.5-7B, Llama
3.1-8B, and R1-Distilled-Qwen2.5-Math-1.5B. We fully open-source our codebase at
dshah02/EntropicReasoners . See Figure 6 for an high-level sample comparison.

2 Problem Background

2.1 Mutual Information Skill Learning

Self-Supervised Skill Learning. Mutual Information Skill Learning [20] is a technique
within the broader reinforcement learning research direction of self-supervised skill learn-
ing. For environments with large amounts of unlabeled data and no reward system,
self-supervised skill learning provides a technique for models to improve in performance
and develop an understanding of the system around them with minimal human interven-
tion and without the limitation of human priors. This allows for less reliance on annotated
training data and the prospect of super-human performance.

To formalize this approach, let us consider an agent in an environment with states s ∈
S , with initial state sstart and terminal state send and actions a ∈ A and environment
transition distribution p(s′|s, a). In state s, the actor samples their next action from the
probability distribution π(a|s), where π represents the agent’s policy. Starting from
sstart, we define the sequence of states and actions (sstart, a1, s2, a2, . . . , send) as the model’s
trajectory. Given the policy π and the environment transition function, we can determine
the probability of each trajectory τ = (sstart, a1, . . . , send) (under the policy π) as Pπ,p[τ] =

∏T−1
i=1 π(ai|si)p(si+1|si, ai). We will refer to this distribution over trajectories as T(π).

Core MISL Objective. Mutual information skill learning proposes that, for some
conditioning set Z , we learn a policy conditioned on z π(·|s, z) for z ∈ Z such that

π = arg max
π′

(
Iz∼Z ,τ∼T(π(·|z))(τ; z)

)
(1)

where I is the mutual information between the distributions, defined as I(X, Y) :=
−H(X|Y)−H(X), with H(·) := E[− log P[X]] referring to Shannon Entropy over discrete
distributions.
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Figure 1: The trajectories are embedded into some trajectory space, which hopefully are
very different for z that are far apart in Z ; in particular if Z is discrete then all strategies
hopefully generate very different trajectory distributions.

Intuition and Interpretation. The fundamental goal of mutual information skill learning
is to allow the model to learn a distinct "skill" for each z ∈ Z , where the "skills" refer to
policies that explore different parts of the state space. To better understand Equation 1,
we can decompose the mutual information term into two components that need to be
optimized. Our objective is to maximize −H(τ|z) +H(τ).

To maximize the term H(τ), we require that our model learn policies that explore a large
amount of state space and have good coverage over the possible trajectories. To minimize
the term H(τ|z), we hope that with the knowledge of z, our conditioning term, there is
minimal uncertainty in the trajectory the model will take. In other words, z controls the
model trajectory and thus we can encourage the model to explore diverse states by running
the policy on distinct z. In a sense, the diversity and randomness of our policy can entirely
be attributed to the randomness of choosing z ∼ Z .

Thus, mutual information skill learning provides a technique to encourage model diversity
and allow us to ensure diverse policies by sampling distinct z.

2.2 Large Language Models as RL Agents

Large Language Models learn a mapping ϕ and matrix Wo that allows the models to
determine a distribution over the next token based on all the previous tokens in context,
where tokens and a tokenizer provide a certain chunking of the input text. To predict
such a distribution, the model learns ϕ : text → Rh, for some large h, and then a matrix
Wo ∈ Rh×|V|, where V is the set of tokens. Thus, by computing smax(Woϕ(input text)) we
have a distribution over the |V|, where smax is the standard softmax function smax(x⃗) =(

exi

∑n
j=1 exj

)
i
.

How do LLMs Generate Responses? To generate text after a prompt, we can then
iteratively sample from the distribution of next tokens produced by the language model to
produce coherent text, like in Figure 2.

Language models are trained in a self-supervised manner from a large corpus of text data
with a goal of minimizing the cross entropy loss between its predicted distribution over
the next token and the actual next token.

Language Models as MDPs. However, note that language models can also be viewed as
learning a policy over a certain Markov Decision Process. Each state is the current tokens
the model has seen, and the model learns a policy π that associates each state with a
distribution over next tokens, with the token chosen representing the action. The transition
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Figure 2: Potential sampling of a language model completing the next word in the sentence:
"A Princeton student walks".

function simply maps each state-action pair to the new state created by combining the
prior text with the new token chosen. To improve model performance and produce models
with more preferred outputs, language models can then be ascribed a reward at the end
of each text completion and this reward can be used to update the policy just as with
traditional reinforcement learning to encourage better responses.

A common method for improving language model performance on problem solving tasks
is to give a reward corresponding to whether a model correctly answered a question.
This reward signal, together with the GRPO algorithm, have led to the development of
strong language models and training techniques that simply require a list of questions and
answers that can be easily numerically verified, such as with math problems.

3 Methods

We introduce two different rewards based on the principle of maximizing mutual informa-
tion. For both, we consider the conditioning set to be Z = {1, 2, . . . , N} for some integer N.
Both of these methods will be used in addition to GRPO training to create math problem
solving agents. Additionally, to condition the language model on z ∈ Z , we append the
text "Strategy {z}" before each prompt.

3.1 Token Mutual Information

To stay close with prior work, we consider the language model as an reinforcement learning
agent over text states as described in section 1.3.2. To encourage mutual information skill
learning, we add an additional reward term during GRPO training that corresponds to the
mutual information of each output trajectory, which we call the token mutual information
reward.

If we permit multiple starting states sstart, which for our LLM correspond to prompts
x ∈ X , then Equation 1 is equivalent to maximizing:

Eτ∼T(π),z∼Z ,x∈X [ln P[τ|x, z]− ln P[τ|x]]

We aim to construct a mutual information reward that also corresponds to maximizing this
objective. For each input prompt x, we randomly select z ∼ Z , and the model generates C
trajectories τ1, τ2, . . . τC. We then compute the reward r(x) = ∑C

i=1 (ln P[τi|x, z]− ln E[τi|x])
based on those trajectories. The token mutual information reward is then added to the
traditional GRPO reward with weight parameter α1, where the traditional GRPO reward
includes a binary verifiable reward and a KL-divergence penalty to ensure generation does
not veer far from the base model.
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3.2 Semantic Mutual Information

The above reward prioritizes different trajectories over token space. However, often times,
differences in token-space, such as choosing different formatting or permuting words, do
not correspond to different high-level reasoning strategies.

Thus, we crafted a second mutual information reward that uses a projection mapping ψ to
embed each output. This mapping ψ serves as a compression of the trajectory and thus
considering the mutual information between ψ(T(π)) and Z , for a well-suited projection,
should retain the semantic meaning of the token completion while being less sensitive
to the specific syntactic way the message is expressed. In practice, for the embedding
function ψ, we will choose a pretrained large language model for general text embedding.
Because this reward takes into account semantic meaning, we call it the semantic mutual
information reward.

As we no longer can compute P[ψ(τ)|x], we now need a different technique to estimate
the mutual information. We make the simplifying assumption that ψ is a continuous map
to some semantic embedding space and use the Kraskov-Stögbauer-Grassberger (KSG)
k-NN estimator for mutual information of continuous distributions to approximate the
semantic mutual information [9]. For a brief explanation of this estimator, see Appendix A.

Similar to the standard MI reward, we use the weight parameter α2 to add the semantic MI
reward to the entire reward function, which includes the traditional GRPO reward and the
token MI reward.

4 Experiments

Base Models Used. For our control models, we train each of the three base models in
Table 1 with GRPO using 2000 training examples from GSM8K [2], limiting the maximum
token sequence length to 1024. Rather than full parameter updates, we used the Unsloth
library to train LoRAs of approximately 80M parameters for each model [3]. We addition-
ally use Unsloth for the GRPO training, with our codebase extending their implementation
[19].

Table 1: LLMs used in this paper
Model Name Params Open-source MMLU MATH GSM8K
Llama 3.1 8B ✓ 73.0 73.8 96.81

Qwen2.5 7B ✓ 74.2 49.8 85.42

R1-Qwen2.53
1.5B ✓ - 83.9 -

1
8-shot result 2

4-shot result
3 Deepseek fine-tuned the Qwen2.5-Math-1.5B base model with 800K samples of reasoning
generated by Deepseek-R1.

Our Investigations. For our experimental models, we then added the token and semantic
mutual information reward terms to the GRPO training reward of correctness, as explained
in subsection 3.1 and subsection 3.2, which incentivize each model response to be different
when given a different strategy number. For the semantic mutual information reward, we
use the general text embedding model multilingual-e5-large-instruct, along with the
NPEET library’s implementation of the KSG estimator for mutual information [17].

We reran the training method with the modified reward functions, ablating the hyperpa-
rameters α1 and α2 as well as N, which control the reward function weightings and the
number of strategies. When α2 = 0 we tested the settings N = 5, 10, 20. with all models.
Otherwise, for the KSG estimator, we require at least k + 1 samples per strategy. Here we
choose to generate 6 samples and so we must generate 6N completions total per estimate
of semantic mutual information, with more completions allowing an estimate with less
variance. As this presents a significant bottleneck in compute time, we only tested nonzero
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values of α2 for N = 5. In these cases we generated 6 completions per strategy, for a total
of 30 completions per estimate of semantic mutual information.

We then measured the performance of the control and experimental models on 100 test
prompts from the GSM8K dataset.

5 Results

5.1 Token Mutual Information

Figure 3 shows that with z = 5, α1 = 5, and α2 = 0, our mutual information framework
can lead to substantial performance improvements on consensus at 5. Interestingly, we
also notice an unexpected increase in the pass@1 performance, which we did not expect,
which can be a subject of further investigation. Plurality did not increase significantly
under the mutual information training either, indicating that the most common answer
is not significantly better compared to the baseline. However, the consensus increase
suggests that models have now become more confident in the correct answer. Our results
fall far from the Table 1 results from Llama 3.1 and Qwen2.5. This may be due to different
correctness measures: rather than 8 or 4-shot, we use zero-shot prompting; we also have
answer extraction code that may be faulty and limit model output tokens to length 1024,
which cuts off several model outputs before they finish solving the problem.

Figure 3: Model performance (percent correct), trained with z = 5.
1 Evaluated on 78/100 problems due to reaching compute limits, results extrapolated for fair
comparison.

In Figure 4, we fix the base model at Qwen2.5 and instead vary Z . We measure pass@|Z|,
but note the largest improvement with z = 5. We conjecture that our hyperparameter
search was most effective for z = 5, and additionally that for larger Z , there are simply
not enough diverse strategies to learn on the GSM8K questions, and this leads to training
instability.

Through the course of our experiments, we have noticed that there is substantial variability
in the GRPO training process. Each baseline required 5 hours of compute on an Nvidia
H100 GPU and each experimental model required around 11 hours. Unfortunately, this
meant we were unable to train enough models to properly account for this variability.
Over the course of this project, we trained over 60 experimental models to test different
techniques.

5.2 Token and Semantic Mutual Information

When attempting to train models with the parameter regime α1 = 0 and a nonzero value
of α2, all three models interestingly are unable to learn to maximize the semantic mutual
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Figure 4: Model performance (percent correct), trained with varying z.
1 Evaluated on 50 problems

Figure 5: Correctness reward in training for parameter regime (α1, α2) = (5, 5) and 2000
training steps. The reward is scaled from 0 to 2, corresponding to how many times the
model is correct over 2 completions.

information reward; the semantic reward term oscillates around 0 for the entire training
process. We hypothesize that this occurs because the reward signal to output ratio is simply
too low. If it takes 30 completions to generate one reward signal for semantic mutual
information, the sparsity of this signal may result in the model being unable to determine
how to maximize it, especially when weighing it in relative importance compared to the
much denser signal of the correctness reward.

Table 2 contains a summary of our (α1, α2) hyperparameter ablations. It is very interesting
to note that for each fixed value of α1, increasing α2 always results in a higher pass@k
evaluation for every model tested. Extrapolating this trend, we likely have not found
the optimal parameter regime (α1, α2) that would result in the best-performing model for
any of the three base modelsl. To test this, we would need to further raise the value of
α2 and test values of α1 in between those listed in the table, where it seems the peak is
attained. The Llama and R1 models that performed the best on pass@k were trained on
the parameter regimes (α1, α2) equal to (2, 2) and (1, 3) respectively.

On the other hand, when adding in the semantic mutual information reward term, Qwen’s
performance degrades significantly. Accordingly, the best pass@k result for Qwen we
trained had parameter regime (α1, α2) = (5, 0), i.e. the semantic reward term was not used
at all. According to the training graphs in Figure 5 and Figure 7, for which α2 = 5, Qwen
suffered a sudden dropoff in all three rewards around step 1250 from which it failed to
recover. When inspecting the sample outputs from this model, several strategies were
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outputting incoherent text or repeating the same words, and the model appears stuck in
this local minimum. This is despite a KL-diverge term in GRPO aiming to prevent such
divergence. This drop in reward was common to other attempts to train Qwen models with
semantic mutual information reward as well. We hypothesize that this occured because the
Qwen model has a narrow distribution of possible sentence completions compared to the
other two models. Thus, when the semantic reward term was included, the Qwen model
attempted to diversify its output for some strategy, but had no more sensible English
completions not already used by other strategies, resulting in the remaining strategies
becoming nonsensical. Further investigation is needed to determine the veracity this claim.

Finally, one observation apparent in all three training graphs in Figure 7 is that the semantic
mutual information reward seems to be highly correlated with the correctness reward.
This is surprising because the output diversity intuitively has a negative correlation with
correctness, as we expect each strategy to be correct less of the time, in exchange for at
least one of the strategies being correct more of the time. Further investigation is required
to figure out what may have induced this correlation - whether it is because the embedding
model and/or KSG estimator are somehow biased towards correct outputs, or if output
diversity and correctness are linked in some other way.

6 Discussion and Limitations

Due to limitations in compute, our training was more limited than we would have preferred,
and we hope to preform more experiments in the future to further validate our results.

In the preferred case, rather than training on middle school difficulty problems that
often have only a single broad way to approach the answer, we would have leveraged
significantly larger models (such as Qwen3 [13] with 235B parameters or Llama 4 Maverick
[12] with 400B parameters) and much harder problems (such as in U-MATH, DeepMath, or
FrontierMath [1] [6] [4]). These harder datasets contains problems that have many distinct
possible approaches of, say, algebra, geometry, combinatorics, etc., which is where we
expect output diversity to be the most effective.

For future work, we wish to verify whether the distinct strategies that were learned actually
provide a new perspective semantically. For example, in certain cases, the model aims
to maximize the mutual information reward by changing formatting attributes or even
speaking less intelligibly. Although this does change the output distribution, these are not
desirable strategies to increase model performance. We hope to work on techniques that
prioritize semantic diversity over token-level diversity, and investigate to what extent our
current techniques do so.

Acknowledgements. We thank Prof. Eysenbach and Chongyi Zheng for the original MISL idea
and paper. We also thank the TAs in COS 435 for having such prompt response times and being
helpful in developing our project.
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A KSG Estimator for Mutual Information

The basic idea of the KSG estimation method for mutual information is as follows: for
X ⊂ Rdx , Y ⊂ Rdy with |X| = |Y| = n, suppose we wish to approximate I(X, Y) =
H(X) +H(Y)−H(X, Y). Let Z be the joint distribution of (X, Y). We can then estimate
the local mutual information as follows: for each point zi = (xi, yi) we draw the smallest
square centered at zi containing its kth nearest neighbor (where distances are computed
using any norm over X and Y) - suppose that this square has length 2ϵi. Define nx(i) =
#{j | ||xj − xi|| ≤ ϵi, j ̸= i} and analogously define ny(i). Then making the approximation
that the density locally in this square is uniform, the interval in X of size 2ϵi contains
nx(i) + 1 points total out of N, so

H(X) = −E[log p(X)] ≈ − 1
n

n

∑
i=1

log
(

nx(i) + 1
2ϵin

)
,H(Y) ≈ − 1

n

n

∑
i=1

log
(

ny(i) + 1
2ϵin

)
and similarly since the square has area 4ϵ2

i that

H(X, Y) = H(Z) ≈ −
n

∑
i=1

1
n

log

(
k + 1
4ϵ2

i n

)
.

Finally, to estimate the overall mutual information, note that several of these terms cancel, so
we are left with I(X, Y) ≈ log(k+ 1) + log n−E1≤i≤n[log(nx(i) + 1) + log(ny(i) + 1)]. For
the actual KSG estimator, instead of directly computing the expected value of logarithms,
the digamma function is used to minimize the error in the most precise approximation [9].

B Additional Figures and Tables

This section contains additional figures or tables complementing the main report.

Figure 6: Comparison of example output of our model and baseline model with a question
from the GSM8K dataset.
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Figure 7: Mutual information reward in training for parameter regime (α1, α2) = (5, 5)
and 2000 training steps. Here, the blue line (labeled MI) represents the token mutual
information reward.

Table 2: Performance statistics for (Model, α1, α2) configurations on 100 test problems, with
z = 5 and k = 5.

Model α1 α2 pass@1 pass@k plu@k cons@k

Llama

0 0 63 88 64 63

1 1 72 90 83 67

1 3 71 91 80 69

2 2 78 95 76 63

3 1 72 86 75 50

5 0 75 86 78 75
5 5 67 87 71 59

R1

0 0 33 70 46 19

0.5 1.5 39 74 48 27
1 1 38 75 44 21

1 3 31 82 50 25

5 0 39 80 44 23

5 5 36 76 44 20

Qwen

0 0 51 83 71 56

1 0.5 7 37 11 2

1 1 20 51 24 1

1 3 16 57 16 4

2 2 4 20 3 0

5 0 73 87 74 69
5 5 3 33 8 0
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