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1 Introduction

Let A ∈ Rm×n
≥0 , b ∈ Rm

≥0, and c ∈ Rn
≥0. A covering LP C is an LP of the form

min
x∈Rn

≥0
{c⊤x | Ax ≥ b}. (1)

A packing LP P is the dual LP of C, which takes the form

max
y∈Rm

≥0
{b⊤y | A⊤y ≤ c}. (2)

An ε-approximation for a covering-packing LP is a solution (x, y) satisfying Ax ≥ b, c⊤x ≤
(1 + ε) OPT, A⊤y ≤ c, and b⊤y ≥ OPT

1+ε . The authors consider a dynamic setting of a series
of updates by an adversary changing one entry of A, b, or c. Thus, the goal is to acquire an
ε-approximation of a solution to either the covering LP or the dual packing LP as fast as possible
after these adversarial actions.

Updates to an LP can be classified into relaxing updates and restricting updates. An
update is restricting to C (and relaxing to P) if it decreases an entry of A or increases an entry
of b or c. We may analogously define updates relaxing C and restricting P as increasing an
entry of A or decreasing an entry of b or c. A sequence of updates to an LP is called partially
dynamic if they all restrict C, or they all relax C.

This paper is devoted to discussing the results in “Dynamic Algorithms for Packing-Covering
LPs” by Bhattacharya, Kiss, and Saranurak (2). We do not present any new material, and we
credit all results to the aforementioned authors. This paper intends, based on (2) and their
presentation in (5), make the core results more accessible to the standard reader.

The main result achieved by the paper “Dynamic Algorithms for Packing-Covering LPs” by
Bhattacharya, Kiss, and Saranurak, is the following theorem, where N denotes the maximum
number of non-zero entries in the input LP throughout the sequence of updates:

Theorem 1 We can deterministically maintain an ϵ-approximation to a packing-covering LP
going through partially dynamic updates in Õ(N/ϵ3 + t/ϵ) total update time. Thus, the amortized
update time of our algorithm is Õ(1/ϵ3).
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2 Covering-Packing LPs
Covering-Packing LPs represent a large subset of interesting LP problems, with notable special
cases being bipartite matching and set cover.

To note the connection to set cover, consider a universe [m] with n sets S1, S2, . . . Sn ⊂ [m].
For each Si, construct the indicator vector si ∈ Rm which satisfies si

j = 1 if j ∈ Si and
0 otherwise. For an element j ∈ [m] and a collection ⋃

i∈A Si with A ⊂ [n], we have that
j ∈

⋃
i∈A Si ⇐⇒ 1 ≤∑i∈A si

j = ∑
i∈[n] xis

i
j where x is an indicator variable for A (i.e. xi = 1

iff i ∈ A). Thus, we can model set cover by the LP:

min
x∈Rn

≥0
{1 · x | Ax ≥ 1}

Where Aji = (si
j) and thus Ax ≥ 1 is equivalent to ∑i xis

i
j ≥ 1, ∀j ∈ [m], and thus equivalent to

the constraint [m] ⊂ ⋃i∈Ax
Si where e ∈ Ax iff xe = 1, and the goal is to minimize 1 · x = |Ax|

and thus we encode the aim of finding the smallest collection of sets that contain all elements.
Rather than considering the optimization problems of Eq. 1 and Eq. 2, we can reduce these

problems to a sequence of approximation feasibility subproblems.
For the purposes of rescaling, we can construct matrix A′ = ( Aij

bjcj
)ij ∈ Rm×n

≥0 , to reach that:

min
x∈Rn

≥0
{c⊤x | Ax ≥ b} = min

x′∈Rn
≥0
{||x′||1 | A′x′ ≥ 1}

max
y∈Rm

≥0
{b⊤y | A⊤y ≤ c} = max

y′∈Rm
≥0
{||y′||1 | A′⊤y′ ≤ 1}

And now to solve the RHS LPs, we can reduce this problem to one of feasibility and binary
search, i.e. for the covering LP, is there a solution x′ ∈ Rn

≥0 to ||x′||1 ≤ λ and A′x′ ≥ 1, which
after a final rescaling A′′ = 1

λA′, is equivalent to the feasibility problem of, is there a solution
x′′ ∈ Rn

≥0 with ||x′′||1 = 1 to A′′x′′ ≥ 1. For the remainder of the paper and for bounds on future
arguments, we consider the following feasability equivalent of Covering-Packing LPs:

For C ∈ Rm×n
≥0 ,

Does there exist either x ∈ Rn
≥0 s.t

∑
j∈[n]

xj = 1 and C · x ≥ 1

or a y ∈ Rm
≥0 s.t

∑
i∈[m]

yi = 1 and C⊤ · y ≤ 1?

By the binary-search approach for converting feasability to optimization, an ϵ-approximate
solution to this feasibility problem may used to solve the generic case with an additional factor
of Θ

(
log( nU

L )
ϵ

)
time, where L and U are the smallest and largest nonzero entries respectively of

C. This holds true for both the static and partially dynamic cases.
Note that we can still view the feasibility version of covering-packing LPs as a variant of set

cover. Consider the below complete bipartite graph.
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Cij ∈ [0, λ] ∀i ∈ [m], j ∈ [n].

The primal covering LP has the constraint on the element, and so we are examining each
element and ensuring the weighted sum of the edges to it exceeds 1− ϵ for the ϵ -approximate
covering, which corresponds to the sets amply covering the element. For more elaboration on
this bipartite graph intuition, we refer the reader to (5).

3 Whack-a-Mole Algorithm

The Whack-a-Mole algorithm is a Multiplicative Weights Update (MWU) algorithm, so solutions
are built in, say t, iterations, but due to the dependency of the solution from round to round,
the authors state that an MWU approach will likely be useless in a fully dynamic setting. In
particular, they claim that in an MWU-based algorithm, there can only be a propagation of
changes if the updates are partially dynamic. In other words, the constraint of partially dynamic
updates allows solutions from previous rounds to remain close to the feasible solution in future
rounds, which is critical for the results we present. As a result, prior changes remain in the
proper direction despite updates, which is critical for quickly finding x(t+1) after updated inputs.

The authors describe this challenge using the language of two players simultaneously solving
two related problems, based on the previous reduction from covering-packing LPs to a more
tractable form. Given a matrix C ∈ {0, 1}m×n, we consider a feasibility problem such that
we must find a vector x ∈ Rn

≥0 satisfying ∥x∥1 = 1
⊤x ≤ 1 and Cx ≥ 1. We also consider the

dual problem, which is finding y ∈ Rn
≥0 satisfying 1

⊤y ≥ 1 and C⊤y ≤ 1. We aim to find an
ϵ-approximate solution in either x or y. They view MWU problems with a Whacking player and
Greedy player.

1. The Whacking player starts with x = 1/n. The player performs whacking on the constraint
i, if constraint i is violated, which occurs when Cix < 1. In this case, we update xj via
(1 + ε)xj forall j when Cij = 1.

2. The Greedy player starts with the zero vector. With y = 0, whenever Cix < 1, perform
yi = yi + 1.

3. We terminate this game if either the Whacking player can no longer whack any more
constraints, in which case we output x, or if T rounds have passed, in which case we output
y∗ := y

T .

One observes that the Whacking perspective corresponds to a Covering LP while the Greedy
perspective corresponds to a Packing LP. Indeed, in the former, we aim to minimize 1⊤x with
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the constraints C⊤x ≥ 1, x ∈ Rn
≥0, and for the latter, we will show analogously that y∗ satisfies

1
⊤y∗ = 1 and C⊤y∗ ≤ (1+ε)1. This general framework extends to the partially dynamic setting,

as either all updates relax or restrict the LP. As a result, if the updates are all restricting, we
look at the Whacking player’s perspective. Note that if a constraint could have been whacked
before, it can still be whacked as the update is restricting. Therefore, we could have chosen to
have taken those past actions before or now and they would still be equally valid. Conversely, if
the updates are relaxing, we take the role of the Greedy player as the updates we have made
previously are still valid choices for updates.

4 Whack-a-Mole MWU Algorithm
We consider the following problem, equivalent to finding an ϵ-approximation of either the covering
LP or dual packing LP: Given a matrix C ∈ [0, λ]m×n where λ > 0, either return a vector
x ∈ Rn

≥0 with 1
⊤x ≤ 1 + Θ(ε) and Cx ≥ (1 − Θ(ε)) · 1, or return a vector y ∈ Rm

≥0 with
1

⊤y ≥ 1−Θ(ε) and C⊤y ≤ (1 + Θ(ε)) · 1.

4.1 Static Setting

Algorithm 1 The Whack-a-Mole MWU Algorithm

1: Define T ← λ ln(n)
ϵ2 , and two vectors x̂1, x1 ∈ Rn

≥0 where x̂1 ← 1 and x1 ← x̂1

∥x̂1∥1
.

2: for t = 1 to T do
3: EITHER
4: Conclude that (C · xt)i ≥ 1− ϵ for all i ∈ [m].
5: Terminate the FOR loop, and RETURN (xt, NULL).
6: OR
7: Find a covering constraint it ∈ [m] such that (C · xt)it < 1.
8: x̂t+1 ←WHACK(it, x̂t). ▷ See Algorithm 2.
9: xt+1 ← x̂t+1

∥x̂t+1∥1
.

10: Let yt ∈ ∆m be the vector where (yt)it = 1 and (yt)i = 0 for all i ∈ [m] \ {it}.
11: end for
12: y ← 1

T ·
∑T

t=1 yt.
13: RETURN (NULL, y).

Algorithm 2 WHACK(i, x̂)
1: for all j ∈ [n] do
2: ẑj ← (1 + ϵ · Cij

λ ) · x̂j .
3: end for
4: RETURN ẑ

Algorithm Examples We provide video examples of this algorithm at: https://github.com/
devs-cs/MWUVisualization

We will initially consider a static algorithm that gives intuition for the dynamic case. If the condition
x is approximately feasible is true, we have that the algorithm is satisfied. We will next show the
correctness of the algorithm.
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Theorem 2 After T = λ ln n
ϵ2 rounds, if x is not approximately feasible, we must have that y is an

approximately feasible solution to the packing LP. Thus, we will either return a solution to the covering
LP or packing LP.

Proof: To derive bounds from the Multiplicative Weights Setting, consider the n experts labeled
{1, 2, . . . , n}. At each round t ∈ T , we pick an expert according to the probability distribution wt

||wt||1
,

initiated as w1 = 1⃗. The costs for each decision are decided as follows. Choose it ∈ [m] such that the
constraint is violated. We then define that, for expert j, the cost is pt

j = 1
λ ·Citj ∈ [0, 1]. We then perform

the update wt+1
j = wt

j(1 + ϵ · pt
j), ∀j ∈ [n].

From (1), by the Multiplicative Weights Update algorithm, we have that for any j ∈ [n],

T∑
t=1

pt · wt

||wt||1
≥

T∑
t=1

(pt)j −
T∑

t=1
ϵ · |(pt)j | −

ln(n)
ϵ

.

Thus, as pT
j ≥ 0, and dividing by T , we have that:

(1− ϵ) ·
∑

t(pt)j

T
≤
∑

t(pt)⊤ · xt

T
+ ln(n)

ϵT

Note that the above setting and updates are identical to that performed in the Whack-a-Mole MWU
algorithm. Associate each covering constraint to an expert, and correspond the vector x̂t to w, noting
that the update conditions and initial values are identical. As it denotes a violated constraint, we have
that (Cxt)it

< 1 and thus (pt)⊤ · xt = (1/λ) · (Cxt)it
≤ 1/λ, and thus

∑
t
(pt)⊤·xt

T ≤ 1
λ . Additionally, note

that ln(n)
ϵ·T = ϵ

λ , and thus we can bound the RHS of the above equation by 1
λ + ϵ

λ = 1+ϵ
λ .

Now let us consider the LHS of the equation. Note that for each j ∈ [n], we have by the definition of
yt that

(pt)j = Citj

λ
= 1

λ
· (C⊤yt)j .

Then writing y := 1
T

∑T
t=1 yt, we have∑

t(pt)j

T
=
∑

t (C⊤yt)j

λT
= 1

λ
(C⊤y)j .

Thus,
(1− ϵ) 1

λ
(C⊤y)j ≤

1 + ϵ

λ
=⇒ (C⊤y)j ≤

1 + ϵ

1− ϵ
= 1 + Θ(ϵ).

Thus, the vector y approximately satisfies the packing LP, and we are done.

Key Takeaway #1
We can view the algorithm as representing a two player game. We have the Whack-A-Mole

player and the Greedy player:

1. Whack-a-Mole Player: Starts with x = 1/n and if x violates a constraint i ∈ [m] (i.e
Cix < 1), update x via MWU to move towards constraint satisfaction. Terminate and
return x if no constraint is violated.

2. Greedy Player: Starts with y = 0 and for any i ∈ [m] s.t. Cix < 1, increment yi by 1.
Terminate after T rounds and return y∗ = y/T

Leveraging the bounds of the MWU regret property, we receive that either the Whack-a-Mole
player returns a solution x to the covering LP or the Greedy Player returns a solution y to the
dual covering LP.
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Implementing the Whack-a-Mole Algorithm
The above algorithm can be implemented in a runtime that is “approximately linear”, or more precisely
O(N · log n

ϵ2 · log2( λ log n
ϵ )) for N being the number of nonzero entries of C ∈ [0, λ]m×n. Instead of updating

x̂ one step at a time, we may split the algorithm into phases where the sum of the weights increase by a
factor of at most (1− ϵ

2 )−1. The main purpose of the phases is to bound the number of updates that can
happen in each phase, as well as the number of total phases.

Since in each phase the total sum of weights ∥x̂t∥1 remains approximately the same, the resulting
approximation x̃t = x̂t

W , where we now normalize by the sum of the weights at the beginning of the phase,
rather than x̂t

∥x̂t∥1
is still close to the actual solution. With this rounding, we now have that within a

phase, enforcing one constraint does not affect whether a separate constraint is satisfied, as applying
WHACK on a single coordinate of x̂t will not change x̃t for other coordinates. This allows us to then
WHACK constraints in arbitrary order and be satisfied that, within the given phase, if we ensure a
constraint is satisfied, it will remain satisfied in that phase.

Algorithm 3 An Implementation of the Whack-a-mole MWU Algorithm.
1: x̂1 ← 1, t← 1, and T ← λ ln(n)/ϵ2

2: LOOP
3: W ← ∥x̂t∥1
4: for all i ∈ [m] do
5: if (C · x̂t

W )i < 1− ϵ/2 then
6: δ ← ENFORCE(i, t, x̂t, W ). ▷ See Algorithm 4.
7: t← t + δ
8: if t = T then
9: Terminate the LOOP and return (NULL, y), where y := 1

T ·
∑T

t′=1 yt′ .
10: end if
11: if ∥x̂t∥1 > (1− ϵ/2)−1 ·W then
12: Go to step (03). ▷ Initiate a new phase.
13: end if
14: end if
15: end for
16: Terminate the LOOP and return (xt, NULL), where xt := x̂t

∥x̂t∥1
.

Algorithm 4 ENFORCE(i, t, x̂t, W ).
1: δ ← STEP-SIZE(i, t, x̂t, W ). ▷ See Algorithm 5.
2: for t′ = t to (t + δ − 1) do
3: x̂t′+1 ←WHACK(i, x̂t′). ▷ See Algorithm 2.
4: it′ ← i.
5: Let yt′ ∈ ∆m be the vector where (yt′)i = 1 and (yt′)i′ = 0 for all i′ ∈ [m] \ {i}.
6: end for
7: return δ.

One optimization over the naive approach of just iterating one repetition of WHACK is to perform is
to binary search on the number of times a constraint needs to be whacked until it is either satisfied or
the phase is over. Then, since all the WHACK operation does is multiply each entry of x by a constant
depending on i and j, we may just do this exponentiation all at once, reducing this particular subroutine
from a linear to logarithmic runtime.

First, to show the correctness of the algorithm, note that it will definitely run the WHACK subroutine
at most T times, which we call rounds. Then it will just return the greedy player’s solution, exactly
the same as in the previous description of the algorithm. We will only whack a constraint which is not
approximately satisfied, i.e. is less than 1− ϵ

2 . Since the sum of the weights only increases when whacking
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Algorithm 5 STEP-SIZE(i, t, x̂t, W ).

1: For every integer k ≥ 1, let zk ∈ Rn
≥0 be such that (zk)j = (1 + ϵ · Cij

λ )k · (x̂t)j for all j ∈ [n].
2: if

(
C · zT −t

W

)
i

< 1 then
3: δ ← T − t.
4: else
5: Using binary search, compute the smallest integer δ ∈ [T − t] such that

(
C · zδ

W

)
i
≥ 1.

6: end if
7: return δ.

a constraint, we have that in a given iteration whacking constraint i from time t to t + δ,

∀t′ ∈ [t, t + δ), C · x̂t′

∥x̂t′∥1
≤ C · x̂t′

W
< 1.

The last inequality follows from 1− ϵ
2 in a given phase (and since it’s being whacked, it is less than 1− ϵ

2 ).
Now if the algorithm terminates after t∗ rounds and returns the whacking solution rather than the

greedy solution, we are guaranteed that for all constraints, C · x̂t∗

W ≥ 1 − ϵ
2 , where W is the sum of

the weights at the beginning of the last phase. Furthermore, we have that W ≥ (1 − ϵ
2 )
∥∥x̂t∗∥∥

1. Here
lies the significance of choosing 1− ϵ

2 rather than 1− ϵ as our bound for checking constraints: defining
xt∗ := x̂t∗

∥x̂t∗∥1
, we now find that

C · xt∗
≥ (1− ϵ

2)C · x̂t∗

W
≥ (1− ϵ

2)2 = 1− ϵ + ϵ2

4 > 1− ϵ

for all constraints, so the solution xt∗ satisfies the same property C · xt∗ ≥ (1− ϵ)1 as in the previous
description of the algorithm.

Now, we prove some bounds on the running times of STEP-SIZE and ENFORCE.

Lemma 1 STEP-SIZE(i, t, x̂t, W ) can be implemented in O(Ni · log2(λ log n
ϵ )) time where Ni is the

number of nonzero entries in Ci (the ith row of C).

Proof: It takes O(Ni log κ) < O(Ni log T ) time to compute (C · zκ

W )i for any κ, since all we need to do is
exponentiate to the κ power for each nonzero entry. Since this quantity increases as κ increases, we can
binary search for δ ∈ [1, T − t], this takes at most log T iterations, for a total of O(Ni log2 T ) time. Now
setting T = λ log n

ϵ2 gives the desired bound.

Lemma 2 ENFORCE(i, t, x̂t, W ) can be implemented in O(Ni · log2( λ log n
ϵ )) time.

The key idea here is that the STEP-SIZE subroutine dominates the runtime.
Proof: Once we have computed the value of δ using STEP-SIZE, it only takes log δ exponentiations to
perform a WHACK δ times for one index. Since WHACK does nothing if Cij = 0, we in fact only need
O(Ni log δ) time to do this. Furthermore, since all the yt′s are equal, we may just multiply the first one
by δ to get their sum. Since δ ≤ T , we find that the time to compute STEP-SIZE dominates the running
time of ENFORCE, as desired.

The other respective half of the bound is to bound the number of phases that can happen. Essen-
tially, the reason why there shouldn’t be too many phases is because we restrict the number of allowed
WHACKs, and each WHACK can’t increase the norm of x̂ by a lot. Therefore, since in every phase ∥x̂∥1
increases by a set factor, we can get a bound on the total number of phases. More formally, we have the
following:

Lemma 3 ∥x̂t∥1 ≤ n
1
ϵ +1 for all t.

Proof: For any given t we have that∥∥x̂t+1∥∥
1 −

∥∥x̂t
∥∥

1 =
∑

j∈[n]

x̂t+1
j − x̂t

j =
∑

j∈[n]

(1 + ϵ
Cit,j

λ
− 1)x̂t

j = ϵ

λ
(Cx̂t)it

= ϵ

λ
(Cxt)it

∥∥x̂t
∥∥

1 <
ϵ

λ

∥∥x̂t
∥∥

1

7



where xt = x̂t

∥x̂t∥1
. The last inequality here was proven in the previous section about correctness of the

algorithm. Then we have that∥∥x̂t+1∥∥
1 < (1 + ϵ

λ
)
∥∥x̂t
∥∥

1 =⇒
∥∥x̂T

∥∥
1 < (1 + ϵ

λ
)T
∥∥x̂0∥∥

1 = (1 + ϵ

λ
)T n ≤ e

log n
ϵ n = n

1
ϵ +1.

Remark 1 The authors’ computation and statement of this lemma contains a minor typo, stating the
upper bound is n1/ε, but as the computation illustrates, it is actually nO(1/ε).

Lemma 4 There are at most O( log n
ϵ2 ) phases.

Proof: Since in each phase, the norm changes by a factor of at least (1 − ϵ
2 )−1, there are at most

log(1− ϵ
2 )−1(n 1

ϵ +1) = ( 1
ϵ +1) log n

log((1− ϵ
2 )−1) = ( 1

ϵ +1) log n

− log(1− ϵ
2 ) ≤

2
ϵ ·
(
1 + 1

ϵ

)
log(n) = O

(
log n

ϵ2

)
.

Theorem 3 The total runtime of Algorithm 3 is O(N · log n
ε2 · log2( λ log n

ε )) where N is the total number
of nonzero entries in the matrix C ∈ [0, λ]m×n

Proof: For a particular phase, we must enforce all the constraints. Recalling that ENFORCE takes
O(Ni · log2( λ log n

ε )) time to implement, we enforce every constraint, taking a total of∑
0≤i≤m

O

(
Ni · log2

(
λ log n

ε

))
= O

(∑
i

Ni · log2
(

λ log n

ε

))
= O

(
N · log2

(
λ log n

ε

))
Since there are O( log n

ϵ2 ) phases, the total runtime is O(N · log n
ε2 · log2( λ log n

ε )) as desired.

Key Takeaway #2
By partitioning our updates into phases determined by the amount ||x̂||1 increases, we can

bound the total amount of phases knowing that ||x̂||1 ≤ nΘ(1/ϵ). We also have that, for each
phase, as ||x̂||1 does not change greatly, whacking one constraint will not affect whether another
constraint is approximately satisified, and thus we can more efficient WHACK constraints,
leading to improved runtime guarantees.

5 Dynamic Whack-a-Mole MWU Algorithm for Covering LPs

5.1 Dynamic Algorithm Overview and Implementation
We next modify the prior static algorithm for the dynamic setting.

We are given a constraint matrix C ∈ [0, λ]m×n, and subsequently the constraint matrix C has
restricting updates decreasing values of entries Cij . This algorithm only handles the restricting case,
and the next section will consider relaxing updates. As before, we maintain either a vector x̃ such that∑

i x̃i ≤ 1 + Θ(ϵ) and Cx̃ ≥ (1−Θ(ϵ)) · 1 or y such that
∑

i yi = 1 and CT y ≤ (1 + Θ(ϵ)) · 1.
At preprocessing, we run the static Whack-a-Mole MWU algorithm. If the algorithm returns y, note

that updates decreasing Cij will maintain y as an approximately feasible solution to the dual, and thus
we can simply maintain y without processing any updates.

Thus, we only consider the case the algorithm returns vector xt := x̂t/∥x̂t∥1. To account for a
restricting update to Cij , we run Algorithm 3 steps (5)− (12). We have that if any constraint in the LP is
violated from this update, it must be the constraint i ∈ [m]. We thus check whether the current solution
x̃t := x̂t/W approximately satisfies constraint i. If not, we will enforce the constraint by repeatedly
whacking it. This process will result in one of the following 3 cases:

• Case 1: If W is no longer an accurate estimate of ||x̃t||1, we will then begin a new phase. Accordingly,
a new phase will begin whenever ∥xt∥1 increases by a multiplicative factor of (1− ε/2)−1.

• Case 2: If t = T , we may then return the approximately feasible solution y to the dual packing
LP. We no longer have to update y as it will remain approximately feasible as updates continue to
be restricting, i.e. relaxing to the packing LP.

• Case 3: If we are in neither of the above cases, then x̃t is an approximate solution for the Covering
LP as we can repeatedly whack a constraint, provided we remain in the same phase.
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5.2 Dynamic Algorithm Guarantees
It is straightforward to check that Lemma 3 still holds even if there are restricting updates. This is
because the key observation that (Cxt)it

< 1 for all t still holds true in the dynamic case, since decreasing
an entry of C can only decrease this value.

We now show that this algorithm will still return either x or y with the same precision as in the
static case. Because all entries of x̃t are monotonically increasing with t, we have that for all constraints
i that are not being enforced, the value of (Cx̃t)i still at least 1− ϵ. Also, by the same proofs as before,
after repeatedly whacking constraint i′ if necessary, we find that (Cx̃t)i′ is also at least 1− ϵ. We have
that at the beginning of a phase, by definition ∥x̃t∥1 = 1. Then at the end of the phase we must have
∥x̃t∥1 ≤ (1− ϵ

2 )−1 < 1 + ϵ, so this other bound still holds. Therefore, the bulk of the proof of correctness
lies in the following claim:

Lemma 5 If the dynamic algorithm returns a vector y, then ∥y∥1 = 1 and C⊤y ≤ 1 · (1 + 4ϵ).

Proof: Although we had the analogues guarantee in the static setting, as we now have that the matrix
C has decrementing terms, we must show this property is maintained. We map Whack-a-Mole back to
the expert setting as we did for Theorem 2. Let Ct stand for the state of C at the time of the t-th call to
WHACK. Let us reconsider the equation we get from considering experts, which I include for ease here:

(1− ϵ) ·
∑

t(pt)j

T
≤
∑

t(pt)⊤ · xt

T
+ ln(n)

ϵT
∀j ∈ [m] (3)

As the algorithm chooses a violated constraint to whack each round, we again have that (Ctxt)it < 1,
and thus we can bound the RHS of by 1+ϵ

λ identically as we did before.
As (pt)j = 1

λ · C
t
itj = 1

λ · ((Ct)⊤yt)j , we thus derive:

1
T

T∑
t=1

(pt)j = 1
T

T∑
t=1

((Ct)⊤yt)j ≥
1
T

T∑
t=1

((CT )⊤yt)j = 1
T

((CT )⊤y)j

with the inequality holding as the elements in C only decrease over time. Thus substituting into Eq. 3
our bounds for the LHS and RHS, we reach

1− ϵ

λ
·
(
(CT )⊤y

)
j
≤ 1

λ
· (1 + ϵ) =⇒

(
(CT )⊤y

)
j
≤ 1 + 4ϵ ∀j ∈ [m].

We now provide a key bound on how many times a constraint can be enforced total in the entire
running of the dynamic algorithm. This has major implications: after a very large number of updates
when all constraints have been enforced the maximum number of times, no more constraints will ever
be updated. This provides a very strong bound the total update time of this dynamic algorithm that
depends only linearly on the number of updates.

Lemma 6 Throughout the entire duration of the dynamic algorithm, a constraint i can be enforced at
most O( log n

ε2 · log λ log n
ε ) times.

Proof: We say the step-size of a constraint is δ if it has been whacked δ times within an enforcement.
Note that δ ∈ [1, T ], so we discretize this interval into O(log T ) intervals of powers of 2. Define the rank
of an enforcement κ to be the unique integer such that δ ∈ [2κ−1, 2κ).

For every fixed κ with 1 ≤ κ ≤ log T , we will demonstrate that the constraint i ∈ [m] has at most
O
(

log(n)
ϵ2

)
many enforcements of rank κ. Intuitively, the upper bound of 2κ gives us a good bound on how

much ∥x̂∥1 increases per WHACK, and the lower bound of 2κ−1 ensures that there are many WHACKs
in each enforcement. Since we have the bound of ∥x̂∥1 ≤ n

1
ϵ +1, this allows us to bound the number of

WHACKs and consequently the number of enforcements.
Formally, suppose that there are γ + 1 enforcements total for some integer γ. If γ = 0 then clearly we

are done. Otherwise, for the second-to-last enforcement, at say, time tγ , we have that C · x̂t

W is at most
1− ϵ

2 at the beginning of the phase and at least 1 at the end of the phase (we do not use the last because
the phase could potentially end too early for the latter bound to hold). Therefore, C · x̂t

W increases by a
factor of at least (1− ϵ

2 )−1 ≥ 1 + ϵ
2 . Then there is some coordinate j∗ that increases by at least a factor

9



of 1 + ϵ
2 . However, since the step size is at most 2κ, we also have that the coordinate can increase by at

most a factor of
(

1 + ϵ
C

tγ

ij∗

λ

)2κ

, i.e.

(
1 + ϵ

C
tγ

ij∗

λ

)2κ

≥ 1 + ϵ

2 .

Since the step sizes of any previous enforcements is at least 2κ−1, we find that in all previous enforcements,
the coordinate must have changed by a factor of at least(

1 + ϵ
C

tγ

ij∗

λ

)2κ−1

≥
√

1 + ϵ

2 .

Since the initial value of x̂t
j∗ is 1, we find that after γ of these rank κ enforcements, x̂t

j∗ ≥ (1 + ϵ
2 ) γ

2 . Then
using Lemma 3 we find that

(1 + ϵ

2)
γ
2 ≤

∥∥x̂t
∥∥

1 ≤ n
1
ϵ +1 =⇒ γ

2 log
(

1 + ϵ

2

)
≤
(

1
ϵ

+ 1
)

log n = O

(
log n

ϵ2

)
where the final bound is analogous to the proof of Lemma 4.

Since there are at most log T possible values of κ, we find that the number of total enforcements is at
most O( log n

ϵ2 log T ) = O
(

log n
ϵ2 log

(
λ log n

ϵ

))
as desired.

This gives us the promised upper bound on the total update time, which is linear in the (sufficiently
large) number of updates:

Theorem 4 The algorithm will handle any sequence of τ restricting updates to C in
O
(

τ + N · log n
ϵ2 · log3( λ log n

ϵ )
)

time, where N is the number of initially nonzero entries of C.

Proof: For each update to some element Cij , we must first decide whether constraint i needs to be
enforced, and then enforce it if necessary. For the former, we maintain variables ẑj for every j ∈ [n] that
will take on values (1 + ϵ)κ for some nonnegative integer κ. At all times t, we check that ẑj is within a
1 + ϵ factor of x̂t

j and update it if not. This gives us a good estimate for coordinate j, so by maintaining
the matrix C · ẑ

W , all entries are within a 1 + ϵ factor of the “true" value, C · x̂
W . This allows us to check

whether constraint i is approximately satisfied in O(1) time by simply subtracting out (Ct−1
ij − Ct

ij) · ẑj

W
and checking whether it is still greater than 1− ϵ

2 .
Now because every coordinate of x̂ is at most n

1
ϵ +1 by Lemma 3, we must have that ẑj can be updated

at most log1+ϵ(n
1
ϵ +1) = O( log n

ϵ2 ) times. When this value changes, we spend O(Nj) time to update the
jth column of the matrix C · ẑ

W , where Nj is the number of nonzero entries in column j. Therefore, the
total time spent on updating the matrix is at most O(

∑
j∈[n] Nj · log n

ϵ2 ) = O(N · log n
ϵ2 ). Therefore, the

total time spent on this subtask is O(τ + N · log n
ϵ2 ).

For the latter, we have by Lemma 2 that we can enforce a constraint i ∈ [m] in time O
(

Ni · log2
(

λ log(n)
ϵ

))
,

and thus by the bound provided by Lemma 6, we have that, for any constraint i ∈ [m], the total amount
of time spent enforcing the constraint is at most O

(
Ni · log(n)

ϵ2 · log3
(

λ log(n)
ϵ

))
. Summing over all

constraints gives a total runtime of at most O
(

N · log(n)
ϵ2 · log3

(
λ log(n)

ϵ

))
. Combining with the first

subtask, we have a total runtime of O
(

τ + N · log(n)
ϵ2 · log3

(
λ log(n)

ϵ

))
as desired.

Key Takeaway #3
At a high level, this algorithm works under restricting updates as any constraints violated on

Ct would have been violated under Ct+1, and thus past whacking actions remain valid. Since we
retain the bound that ∥x̂∥1 ≤ n

1
ϵ +1 and we only enforce constraints that require us to increase

∥x̂∥1 by a noticeable factor, we can bound the total amount of enforcements that can occur on
each constraint.

Moreover, as C is decreasing element wise, we can retain guarantees that if t = T , the
associated value of y will solve the packing LP, and thus the termination conditions of the static
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algorithm work in the dunamic setting. Therefore, in the long run, we are able to use the static
algorithm with minor changes for the dynamic setting to achieve constant update time.

6 Greedy MWU Algorithm
In the prior sections, we were observing the case where we are given a sequence of restricting updates,
in which we discussed that we would like to take the perspective of the Whack-a-Mole player. Now,
we consider the case where we are given a sequence of relaxing updates, essentially reversing the
problem. In fact, the exposition and results will feel very similar. Throughout this section, we deal
with Positive LPs, which ask the following: Find x ∈ Rn

≥0 such that Px ≤ a and Cx ≥ b where
P ∈ Rmp×n

≥0 , a ∈ Rmp

≥0 , C ∈ Rmc×n
≥ 0, b ∈ Rmc

≥0 , where mp is the number of rows for P and mc is the number
of rows of C.

We desire to find an ε−approximate solution to such LPs which is either an x satisfying Px ≤ (1+ε)a
and Cx ≥ (1− ε)b, or ⊥ to indicate an infeasible solution. An update will be relaxing if it increases an
entry of C or a, or decreases an entry of P or b. Note that on initial rounds, the program will return ⊥,
but we desire to return a feasible x after a certain point in time. After this, x will continue to be an
approximate solution in future updates. As more definitions, we will say an update is an entry update
if it changes P or C. Meanwhile, an update is said to be a translating update if it changes a or b. Let
L and U be upper and lower bounds on the values of P, C, a, b. Let N be an upper bound on the total
number of nonzero entries in P, C.

The authors focus on the setting where all the relaxing updates are entry updates since if we are happy
with an ε-approximate solution to the input LP, we can ignore translation updates to the constraints
as long as ai/bj (just the coordinates of a, b) does not increase/decrease by more than a factor of 1 + ε.
Moreover, we observe that we can simulate a translation update by applying as many entry updates as
there are nonzero entries in Pi, Cj(ith row of P , jth row of C) to C and P . In particular, if we need
to scale ai, bj by a factor of α ≥ 1, we can scale up Pi, Cj by that same factor. As a result, it suffices
to consider only entry updates, and for convenience we scale a, b to 1. Then, our constraints become,
Px ≤ 1, Cx ≥ 1.

6.1 Static Greedy MWU Algorithm
The authors attribute this static algorithm to (3) and (4), but we summarize the exposition contained in
(2). We can define two functions to phrase this Positive LP question in an alternative way. Define

fp(x) = 1
η log

∑mp

i=1 exp(ηPix) (4)
fc(x) = 1

η log
∑mc

i=1 exp(−ηPix) (5)

η = log(mp+mc+U/L)
ε (6)

which satisfies
max

i∈[mp]
Pix ≤ fp(x) ≤ max

i∈[mp]
Pix + ε

min
j∈[mc]

Cjx− ε ≤ fc(x) ≤ min
j∈[mc]

Cjx

for all x, so the algorithm desires to find x satisfying fp(x) ≤ 1 and fc(x) ≥ 1 as such x is immediately
an approximate solution by the above two equations. We define a coordinate k ∈ [n] to be cheap with
respect to a point x if and only if ⟨∇fp(x), ek⟩ ≤ (1 + Θ(ε)) · ⟨∇fc(x), ek⟩, where ek is the kth standard
basis vector. We can make this more precise with more notation for coming observations.

We associate a weight to each LP constraint. For all i ∈ [mp], j ∈ [mc], we define wp(x, i) := exp(ηPix)
and wc(x, j) := exp(−ηCjx). Moreover, we define wp(x) =

∑mp

i=1 wp(x, i) and wx(x) :=
∑mc

j=1 wc(x, j).
The cost of a coordinate k at a given x is then

λ(x, k) :=
∑mp

i=1 wp(x, i) · P (i, k)∑mc

j=1 wc(x, j) · C(j, k)

and k is said to be cheap w.r.t x if and only if λ(x, k) ≤ (1 + Θ(ε)) · wp(x)/wc(x). We now have the
following algorithm.
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Algorithm 6 A static algorithm for solving a positive LP (P, C).
1: INITIALISE x← 0 ∈ Rn

≥0.
2: while minj∈[m] Cj · x < 1 do
3: if there is no cheap coordinate at x then
4: return that the LP is infeasible.
5: else
6: Let k ∈ [n] be a cheap coordinate.
7: x← BOOST(x, k).
8: end if
9: end while

10: return x.

Algorithm 7 BOOST(x, k).
1: Find the maximum δ such that maxi∈[m]P P (i, k)·δ ≤ ϵ/n and maxj∈[m]C ;j ̸=x C(j, k)·δ ≤ ϵ/n.
2: return x + δek.

The algorithm starts with x = 0. In every iteration of the WHILE loop, we either conclude that the
input LP is infeasible, or we find a cheap coordinate and boost x a small amount in the direction of that
cooridnate. This algorithm has the following properties, which we state without proof:

• Property 1: If there is no cheap cooridnate at x, then LP (P, C) is infeasible.

• Property 2: Let ε < 1/10 and let k be a cheap cooridnate at y and update z with BOOST(y, k).
Then fp(z)−fp(y) ≤ (1−Θ(ε))·(fc(z)−fc(y)) ≤ Θ(ε). Note that as x = 0 initially, fp(x), fc(x) = 0
as well, so Property 2 gives way to the following invariant.

• Property 3: We always have fp(x) ≤ (1 + Θ(ε))fc(x).Moreover, each call to BOOST additivly
increases fc(x) by at most Θ(ε).

Lemma 7 If Algorithm 6 returns an x, then x is an Θ(ε) approximate solution to the input LP. Otherwise,
the algorithm correctly declares that the input LP is infeasible

Proof: If the algorithm terminates because it found an x, note that in the prior iteration of the loop,
we had fp(x) ≤ (1 + Θ(ε))fc(x) and fc(x) ≤ minj∈[mc] Cjx < 1. Note that the loop terminates when
fc(x) ≥ 1, by Property 3, we have 1 ≤ fc(x) ≤ 1 + Θ(ε). Moreover, we also have maxi∈[mp] Pix ≤ fp(x) ≤
(1 + Θ(ε))fc(x) ≤ (1 + Θ(ε))2 ≤ 1 + Θ(ε) as ε is small, so x is a Θ(ε)−approximate solution to the Input
LP. If we haven’t found an x, Property 1 states that the input LP is infeasible.

6.2 Dynamic Greedy MWU
This section contains many propositions with long and technical proofs, so we will omit proofs and instead
opt to state these propositions and offer broad descriptions of the overall algorithm.

Like the dynamic Whack-a-Mole, we start initialization by running the static Greedy algorithm. If
this outputs an approximate solution, we are done since this output is a still a solution after any future
relaxing updates. After pre-processing, the dynamic algorithm addresses relaxing updates to the covering
constraints. After a relaxing update, we keep boosting x along cheap coordinates until we can’t anymore
or minj∈[mj ] Cj ≥ 1. In the former, we output this LP is infeasible and in the latter, we output that x is
an approxmate solution.

This dynamic algorithm still has Property 3, and as a result, we end up with maxi∈[mp] Pix ≤ 1+Θ(ε)
as we proved earlier. From here, we observe that a relaxing update to C or boosting x can only increase
wp(x, i) for packing constraint i or decrease wc(x, j) for covering constraint j. It follows that the cost of
any coordinate can only increase after BOOST. Moreover, if C(j, k) is relaxed, the cost of k′ ̸= k relative
to x can only increase, but the cost of k can either increase or decrease.

With this information, we now describe the algorithm more. We maintain x ∈ Rn
≥0, wp(x, i), wc(x, j)

for all i ∈ [mp], j ∈ [m)c], wp(x), wc(x), and all the values of Pix, Cjx. We can define phases in the
following manner. We calculate a ratio γ(x) = wp(x)/wc(x). Note that this value is 1 at the start of the
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algorithm since x = 0. We will say a new phase starts whenever γ(x) increase by a factor of 1 + Θ(ε).
This factor is intuitive due to Property 3, so that a phase is spanned by calls to BOOST or a mixture of
calls to BOOST with some relaxing updates to C.

Initialize γ0(x) to be the starting value of γ(x). We will say a cooridnate k ∈ [n] is cheap if and only
if λ(x, k) ≤ (1 + Θ(ε))γ0(x). With this classification, maintain a list of cheap coordinates. At the start of
the algorithm we initialize this list E to be [n], and then call BOOST-ALL(x, E), which essentially forces
the particular k in WHILE loop iterations to no longer be cheap. Moreover, the monotonicity of costs
implies that k will never be cheap again within the same phase!

For handling a relaxing update during a phase, note that after BOOST-ALL, our list E is empty,
so a relaxing update to an entry P (i, k) could only lead to k as a possible cheap coordinate. If k does
become cheap, we set E = {k} and perform BOOST-ALL(x, E), so that we keep boosting along k. Note
that by properties described earlier, boosting k won’t contribute to other coordinates becoming cheap.
As a result, we’ve handled the update accordingly.

Algorithm 8 BOOST-ALL(x, E).
1: while E ̸= ∅ do
2: Consider any k ∈ E.
3: E ← E \ {k}.
4: while λ(x, k) ≤ (1 + Θ(ϵ)) · γ0(x) do
5: x← BOOST(x, k). ▷ See Algorithm 7.
6: if minj∈[m]C Cj · x ≥ 1 then
7: return x.
8: end if
9: if γ(x) > (1 + Θ(ϵ)) · γ0(x) then

10: Terminate the current phase.
11: end if
12: end while
13: end while

From this description, the following are the main results about this dynamic greedy MWU algorithm.

Lemma 8 Fix any coordinate k ∈ [n]. The dyanmic algorithm described above calls the subrountine
BOOST(x, k) at most O( log2(mc+mp+U/L)

ε2 )

Lemma 9 The dynamic algorithm described above has the most O( log(mc+mp+U/L)
ε2 ) phases.

Combining these results with the static algorithm runtime from preprocessing of O(N · log(mc+mp)
ε2 ), we

have the following.

Theorem 5 We can maintain an ε−approximate solution to a positive LP undergoing a sequence of t

relaxing updates in O(N · log2(mc+mp+U/L)
ε2 + t) total update time

7 The Full Algorithm
The main change here is that relaxing updates can occur to P or C. Note that the prior section considering
the case where relaxing updates occured to C, but if a relaxing update occurs to P , P (i, k) gets reduced
for some i, k, so wp(x, i) decreases, breaking the monotonicity of weights from earlier. The authors form
a new LP to work around this shift in circumstance.
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The Extended LP

1. Define P ∗ ∈ Rmp×(n+1)
≥0 , where P ∗(i, k) = P (i, k) and P ∗(i, n + 1) ≥ 0 for all i ∈ [mp], k ∈ [n].

2. Define C∗ ∈ Rmp×(n+1)
≥0 , where C∗(j, k) = C(j, k) and C∗(j, n + 1) = 0 for all j ∈ [mc], k ∈ [n].

3. LP(P, C) is feasible if and only if the extended LP(P ∗, C∗) is feasible. One notices this as the
vector x solves LP(P, C) leads to a soluton to LP(P ∗, C∗) via (x, 0). Conversely, just ignore the
(n + 1) dimension entries to get a solution to LP(P, C).

Initialization: Set P ∗ to be the zero matrix and we start with x∗ = (x∗
1, x∗

2, . . . , x∗
n, x∗

n+1) = (0, . . . , 0, 1),
so that fp(x∗) = fc(x∗) = 0. We desire to modify x∗ so that it is a Θ(ε)−approximation to the extended
LP(P ∗, C∗). These updates are along the same theme as the Greedy MWU algorithms by finding cheaper
coordinates and boosting x∗. Moreover, we assume that changes to P, C are reflected in the corresponding
indices in P ∗, C∗ respectively.

For the extended LP, after any relaxing update to an entry P (i, k) of P , we increase the value of
P ∗(i, n + 1) such that P ∗

i x∗ remains unchanged. We do this so that wp(x∗) remains unchanged and this
manipulation allows us to find a solution to the extended LP. We will call these pseudo-updates.

Recall the initial Problem from Whack-a-Mole section: Given a matrix C ∈ [0, λ]m×n where λ > 0,
either return a vector x ∈ Rn

≥0 with 1
⊤x ≤ 1 + Θ(ε) and Cx ≥ (1−Θ(ε)) · 1, or return a vector y ∈ Rm

≥0
with 1

⊤y ≥ 1 − Θ(ε) and C⊤y ≤ (1 + Θ(ε)) · 1. Now we desire to maintain a solution when C is
experiencing relaxing updates, so each update increases a value of C. The idea is essentially to run
the Greedy MWU dynamic algorithm on the positive LP defined by 1

⊤x ≤ 1 and Cx ≥ 1. When this
algorithm has finished processing an update, we have two cases

1. The algorithm returns a solution x satisfying satisfying the conditions of the problem. We accept
this x and terminate the algorithm as this vector continues to be an approximate solution after
future updates.

2. The algorithm declares that the positive LP is infeasible since there is no cheap coordinate to
boost on. We define a vector (̂y) consisting of ŷj = wc(x, j)/wc(x) (basically a vector containing
normalized weights of every column). We desire to show that ŷ is a feasible solution to the dual
packing LP.
Indeed, this is not hard to see, as ŷ consists of normalized weights of the covering constraints,
so 1

⊤ŷ = 1. Now, consider a coordinate k which is not cheap. It follows from the definition of
cheapness, that

1∑
j∈[mc] ŷjC(j, k) ≥ 1 + Θ(ε)) =⇒ (C⊤ŷ)(k) =

∑
j∈[mc]

ŷjC(j, k) ≤ 1

so it follows that C⊤ŷ ≤ 1.

Keeping this information in mind, the algorithm maintains an estimated weight (1− ε)wc(x) ≤ w∗
c (x) ≤

(wc(x)). If we end up in the second case, we return y = (yj = wc(x,j)
w∗

c (x) ). We observe ŷj ≤ yj ≤ (1 + Θ(ε))ŷj ,
and so we get 1T y ≥ 1 and CT y ≤ (1 + Θ(ε))1 as a result of the feasibility of ŷ for the dual packing LP.1
Note that storing y is not computationally expensive since we store wc(x, j) for all j and we don’t have
to change w∗

c (x) while we are within the same phase.
Indeed, recall γ(x) = wp(x)/wc(x) does not change by more than a factor of 1 + Θ(ε) within a given

phase. Moreover, wp(x∗) is unchanged!, so checking this condition is the same as checking the change of
wc(x). Then if wc(x) has changed by a factor of 1 + Θ(ε), we begin a new phase. We also recall that there
are O( log(mc+mp+U/L)

ε2 ) phases in the dynamic Greedy MWU algorithm and as there are mc columns, it
takes O(mc) time to update y in a new phase. We can combine this with Theorem 4, giving the following
theorem.

Theorem 6 We can determinisitically maintain a solution that satisfies 1
⊤x ≤ 1 + Θ(ε) and Cx ≥

(1−Θ(ε)) · 1 or a solution to its dual when C undergoes t relaxing entry updates in

O

(
t + N · log2(mc + U/L)

ε2 + mc ·
log(mc + U/L)

ε2

)
= O

(
t + N · log2(mc + U/L)

ε2

)
1The paper maintains that wc(x) ≤ w∗

c (x) ≤ (1 + ε)(wc(x)), leading to a false conclusion, so we have tweaked
estimate range, to match more with the proof.
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We can then perform a similar reduction from this setting to Packing and Covering LPs to acquire the
main result.

Theorem 7 Consider any sequence of t relaxing updates to a covering LP, where each update either
increases an entry of C or decreases an entry of a, b. Let N be the maximum number of non-zero
entries in C, let L/U be the lower/upper bound on the minimum/maximum value of a non-zero entry
of C, a, b. We can deterministically maintain an ε−approximate optimal solution to the Covering LP in
O(t · log(nU/L)

ε + N · log2(m+U/L)
ε2 · log(nU/L)) total time. This also holds for such a solution to a packing

LP with restricting updates.
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