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1 INTRODUCTION

In many domains of machine learning, high-dimensional embeddings are important for expressive
representation learning. As deep reinforcement approaches have reached and even surpassed human
performance in many domains, such as playing Atari games (17)), designing hardware circuits (23),
solving Rubik’s cubes (29)), and dominating collaborative-competitive games like Monopoly (4) and
Diplomacy (2), we would expect that increasing behavioral complexity requires higher-dimensional
embeddings of behavior, as they have in other representation learning tasks in image generation
(14) and image-language learning (21). Much of the success in the aforementioned tasks using
conventional RL can be attributed to improved algorithms that better explore the possible states and
to better models of the environment. These algorithms typically allow the agent to attempt different
actions and receive a reward corresponding to furthering along the desired goal (i.e., solving a side of
the Rubik’s cube). Traditional deep reinforcement learning approaches often rely on a model of the
environment as a Markov Decision Process, where there are states s; € S and, after taking an action
a; € A, the next state s;; is sampled from the distribution p(s|s;, a;), where p corresponds to the
environment transition probabilities. As part of the model, we design rewards 7 (s, a;) for taking
actions at particular states. The reinforcement learning problem is thus to learn a policy 7 (als:),
which is a distribution over actions from a given state, that maximizes the expected cumulative
discounted reward from the environment, e.g.
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However, we may have access to an environment but lack reward signals, motivating an unsuper-
vised approach to reinforcement learning. In many real-world domains, it can be challenging to
shape a reward signal resulting in the desired behavior (8) or to gather labeled trajectories, and
additionally we may wish to design agents with policies that can be easily adapted to many differ-
ent rewards. This challenge motivates the development of unsupervised reinforcement learning, in
which the agent has access to an environment but primarily explores the environment in the absence
of a reward signal (8;|12). In this setting, the agent often navigates the environment without rewards
(unsupervised period), followed by a substantially shorter exploration phase with rewards (super-
vised period) where the agent learns to adapt its knowledge to the new observed reward signal (12)).
We discuss specific approaches for unsupervised reinforcement learning in Section 2}

One approach we will focus on for reinforcement learning involves training the reinforcement learn-
ing agent without rewards before specializing it on a reward signal. We use unsupervised reinforce-
ment learning to teach the agent a diverse set of “skills” conditioning the policy’s behavior during
the unsupervised training period, and then learn to adapt those skills to collect reward during a super-
vised period (12). Mutual Information Skill Learning (MISL) attempts to learn, for each latent skill
z ~ Z, adistinct trajectory across the environment. More specifically, for a fixed skill distribution
Z, we train a skill-conditioned policy 7 optimizing:

Isz,'err(-\z)(f(T); Z) = H(f(T)) - H(f(T)lZ) (1

where 7 corresponds to a trajectory rollout (sg, ag, $1,a1,. .., ST, ar) from policy 7, where we
sample a; ~ m(s¢, z) and s;11 ~ p(s|st, ar). f is often either the identity function or returns the
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Figure 1: With a higher dimensional skill latent, MISL-like methods should have the capacity to
learn more aspects of the state space and a greater diversity of trajectories. At minimum, high-
dimensional MISL should explore at least as well as with a lower dimensional state space. This is
an illustrative figure.

final state, depending on whether MISL aims to learn skills corresponding to distinct trajectories
or distinct final states (8 [16;[1). We can decouple the Mutual Information objective into the terms
‘H(7), which incentivizes the model to learn a policy that covers a large region of the trajectory space,
and into the term —#(7|z), which incentivizes the resulting trajectory to be deterministic given z.
Thus, ideally, the policy learns distinct skills that correspond to executing distinct trajectories and
reaching distinct regions of the state space.

Papers such as VISR (12)) show that models trained with unsupervised RL learn expressive behav-
iors, which can later be adapted to specific reward signals. For increasingly complex and large
environments, successful unsupervised training with Mutual Information Skill Learning will require
learning a large class of skills in order to parametrize a diverse class of downstream behaviors, and
we expect that complex behavior is best expressed in a high-dimension skill space, as illustrated in

Figure[T]

However, in prior papers leveraging Mutual Information Skill Learning, skills are often drawn from
small categorical distributions or low-dimensional subspaces. VISR (12) tests skill dimensionality
ranging from d = 2 to d = 50 and observes the best performance by choosing skills from a subset
of R®. DIAYN (8) chooses skills from a categorical distribution with K = 50 entries, DISCS (13}
chooses skills from a subset of R? (16)), and CSF (28) performs dramatically worse with latents in
R® or R32 compared to R2. Thus current MISL approaches struggle to adapt to high-dimensional
skill latents. To extend MISL to handle more complex environments, it is critical that MISL ap-
proaches can be adapted to effectively learn distinct skills from high-dimensional skill spaces.

We explore competing hypotheses on why MISL fails to produce effective skills for downstream
tasks when skills are sampled from a high-dimensional subspace, with a goal of better understanding
the challenges in this domain and to develop training methods mitigating this concern.

2 RELATED WORK

In this section, we discuss the relevant prior work regarding unsupervised reinforcement learning,
unsupervised skill learning, and the current limitation and research within mutual information skill
learning.

Unsupervised Reinforcement Learning. Many techniques in unsupervised reinforcement learn-
ing (7;[3; [12 O) involve assuming 7 (s;, a;) =~ ¢(s¢, as, g) g, for some goal vector g and a mapping
from states to state features ¢. With this substitution, we can represent the cumulative discounted
reward in terms of the feature encoding:
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where we define ¢ (sg,a9,9) = ZtT:o ~tp(st, at,g). During the unsupervised training period,

as we do not know the reward, we sample random vectors g, and train a neural-network ap-
proximation to learn (s, at, g) based on model trajectories under an e-greedy policy m(s;) =
argmax,(s¢,a,g) " g. During the supervised training period, we fix the encoder 1 and restrict
ourselves to finding g that best models the shown rewards, often by linear regression (3)).

This strategy summarizes a multitude of approaches including (3} [7; |9), with notable distinctions
being that DFP (7)) chooses ¢ corresponding to selecting the subset of state that matters for a reward,
and successor features (3) uses a fixed feature encoder ¢. CRL (9) learns the encoder 1) directly
and a separate goal-state encoder v, with NCE-binary loss, so that exp(c(¢(s, a) "1,4(s,))) corre-
sponds to the cumulative discounted reward of r4(s;,a;) x p(si+1 = Sg|s¢,ar). Other methods
(125 28)) learn successor features in an unsupervised skill-learning manner described in the next sec-
tion. Generally, the approaches we have shown decouple unsupervised reinforcement learning into
predicting future states to learn v, which simply requires trajectory data rather than rewards. Many
other unsupervised reinforcement learning techniques (6) can be viewed as predicting functions of
future states for states gathering during an unsupervised training period or offline training period.

Many techniques in unsupervised reinforcement learning involve assuming a distribution of rewards
or goals the agent cares to learn during the long unsupervised training period and predict future state
evolution, either as rewards, cumulants over future states, or as distributions of future states, as a
function of these goals (7 3). Thus, for the supervised training period, the agent can find the goal
in its distribution that best matches the observed rewards, and leverage the policy learned during
unsupervised training period.

Unsupervised Skill Learning. Our work explores properties of skill-learning algorithms. In many
ways, the above unsupervised reinforcement learning framework can also be thought of describing
a skill-learning algorithm, where each vector g corresponds to a different “skill” conditioning the
models behavior. Mutual Information Skill Learning methods are distinct in that they do not consider
the representation of the reward or eventual goal and instead arise out of the intuition of allowing
our agent to exert maximal control the environment (18)), beyond just reaching high-reward regions,
and leveraging the skill distribution to parameterize this control.

Note that the mutual information objective described in Eq. [I]is equivalent to:
Z(f(1); 2) := H(z) = H(z]f(T)) 2)

The mutual information objective described above is more commonly considered since, as z is drawn
from a fixed distribution, #(z) is fixed and thus we solely optimize against (z|f(7)). Unfortu-
nately, this objective is intractable, and thus prior work often considers the variational lower bound
of E[g(z|f(7))] where q is a learned discriminator (12)).

Prior work on Mutual Information Skill Learning. DIAYN (8) introduces unsupervised mu-
tual information skill learning, leveraging the variational bound considered above, and considers the
mutual information between the final state of a trajectory and the latent state. In navigation environ-
ments, DIAYN showcases skills corresponding to reaching diverse regions of the environment, and
in locomotion tasks, skills corresponding to walking, running, hopping, etc. (8).

Subsequent work VALOR (1) improves skill learning capacity by training the discriminator ¢ as
an LSTM (24) network with input 7 and introduces curriculum skill learning. They find the more
expressive decoder allows for more distinct skills and train policies with hundreds of distinct cate-
gorical skills. DADS (23)) replaces the discriminator ¢(z|s) with a dynamics model ¢(s’|z, s), thus
aiming to associate experienced trajectories to particular skills. CIC (16)) further tests the hypothesis
that the discriminator capacity limits skill learning, and designs a contrastive discriminator learned
with the NCE objective (10) that better scales to large skill vectors. CSF (28) also uses contrastive
learning to learn an actor but uses a successor feature-like approach to learn the critic. VISR (12)
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merges the MISL objective with the unsupervised reinforcement learning r,(s,a) = ¢(s) g and
trains successor features (s, a, g). However, VISR optimizes r, rather then a cumulant, leading
to a interpretation of z as both goals and direction in state-space that VISR wishes to optimize
alignment with.

Performance of High-dimensional Skill Learning. Many unsupervised skill learning methods
use a low-dimensional space for embedding skill vectors. In addition, the related works report
that unsupervised skill learning typically behaves worse as latent dimension is increased. DIAYN
leverages skills drawn from a uniform distribution over a size 50 categorical distributions, however,
subsequent work (12) finds improved downstream performance with skills drawn from a the uniform
distribution on the 4-sphere, {z € R® : ||z||> = 1}. DADS (23) only leverages 20 discrete skills for
some tasks, and 2 — 5 dimensional continuous distributions for other tasks. VISR (12)) sweeps over
embedding dimensions for the hypersphere from 2 to 50 and determines that 5 is the best performing
dimensionality. DISCS (13)) is a modification of VISR using a soft actor-critic (11)) objective, which
uses 2-dimensional space and reports worse performance in 3 or 4 dimensions. CSF (28) reports
much worse performance with 8 and 32 dimensions than with 2 dimensions, as shown in Figure[2]

Enabling High-dimensional Skill learning. Several prior works have also expressed interest in
limitations on the skill dimension. Some of these works propose methods to mitigate this limitation
and enable a more complex skill distribution. For example, VALOR (1)) proposes a curriculum
learning approach in which the skill dimension is gradually increased during the course of training.
Specifically, if K is the number of available skills, a skill is drawn according to ¢ ~ Categorical(K).
The policy 7 is parametrized by the drawn skill ¢, and a trajectory is sampled according to the policy
and the environment dynamics 7 ~ m(c). K is updated according to an exponential schedule (1))

K+ min([1.5K + 1], Kpax)

when the performance of the decoder E. ca¢(k) [P(2 |7)] reaches a fixed threshold, meaning that
Toom (-] 2)

the decoder is powerful enough to learn more skills. CIC (16)) is similarly concerned by the inability

of MISL methods to adapt to high-dimensional skill latents, and offers an improved discriminator

as a potential solution.
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Figure 2: Performance of CSF (28) and related method METRA (20) against a sweep of skill di-
mension. This is Figure 9 in (28)).

3 METHODS

In this work, we propose several hypotheses for why high-dimensional skill vectors are difficult to
learn in the MISL setting. For each hypothesis, we will evaluate experiments that can support or
falsify the hypothesis.
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We perform experiments using VISR (12), a popular mutual information skill learning approach.
For VISR, the skill performance is measured by the reward on a downstream task after generalized
policy improvement with the skills. We evaluate VISR on the MinAtar Atari-inspired environments
of Breakout, Space Invaders, and Asterix (27) as implemented in gymnax (15). In our Appendix,
we additionally include preliminary experiments with CSF (28), a more recent MISL method. Im-
plementation details for VISR and CSF are available in the Appendix.

We choose to evaluate VISR because its admits a simple method to apply learned skills to inference-
time tasks by leverage linear regression to find a skill most similar to reward-maximizing behavior.
This allows us to evaluate our models by measuring the average reward. There are also efficient
VISR implementations using JAX that we use to run our experiments (22)). Both CSF and VISR are
known to perform worse when the skill dimension is higher, as demonstrated for CSF in Figure
and mentioned in the VISR skill-dimension sweep (12). In the main paper, we will predominantly
consider the following with VISR:

Baselines. Before we can ablate the model and understand the limitations of high-dimensional skill
vectors, we must establish the baseline performance of VISR in our chosen environments. We will
perform a sweep over latent dimension d to determine the best-performing value for d and confirm
that performance degrades as d increases.

Encoder expressivity. We will investigate improving the expressivity of the VISR ¢ encoder. We
hypothesize that Markovian encoders, which depend on the current state, action, and skill of the
trajectory have more limited capacity to predict state evolution than if they had the prior trajectory.
Even in cases such as Atari games, we predict past temporal information can aid in predicting future
skill-conditioned state evolution.

Environment Complexity. We expect that more complex environments have more skills to learn,
and thus are more suitable for high skill latent dimension d. As a proxy for this, we additionally
expect environments with longer horizon to be more suitable for larger d.

Skill localization. In high dimensions, VISR may struggle more with policy improvement, as we
have more axes to optimize over, and thus a sampled skill is less likely to be relevant. Despite having
relevant skills, the increased state-space freedom may demand more samples for VISR generalized
policy improvement to learn useful ). Thus, one hypothesis is that VISR with high d is starved for
samples for policy improvement, and will have disproportionate improvement with more generalized
policy improvement samples.

Training time. It is possible that existing approaches for skill learning are already capable of
learning skills from subsets of high-dimensional R¢, but since each skill has fewer trajectories, we
simply require scaling training time proportionally to the amount of trajectories.

4 EVALUATIONS

In this section, we will formalize our hypotheses and perform experiments to test their validity.

We hypothesize that increased training time, better skill localization, longer environments, and non-
Markovian discriminators will lead to disproportionate improvements on downstream tasks for VISR
with larger skill dimension (d > 10) relative to smaller skill dimension (d < 10).

To evaluate the hypothesis, we perform the following experiments:

1. We establish clear baselines to confirm the VISR (12) result that increasing skill dimensions
leads to worse downstream performance.

2. We evaluate whether leveraging more skills for GPI leads to improved relative performance
for higher skill-dimension models.

3. We evaluate whether increased environment complexity, in the form of longer trajectories,
leads to improved performance for higher skill-dimension models.

4. We evaluate whether very long training runs allows for better learning in the form of down-
stream performance.
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Figure 3: Average reward on the Breakout MinAtar (27) Game for a VISR model trained with vary-
ing skill dimension d and default parameters (see Appendix) The dark line is the mean of three runs,
with the shaded regions showing the max and min of trials. For more details on model architecture
and training, see Appendix. As a reference point, a DQN on Breakout achieves a reward of approx-
imately 10 by 5 x 10° training frames (27), which is comparable to the d = 2 reward.

5. We ablate expressiveness and temporal-dependency for v, testing CNN-LSTMs of vary-
ing hidden-dimension and CNN models, to test whether more expressive discriminators
improved higher skill dimension models.

Training Setup. We train VISR models with a convolutional backbone on an LSTM
with hidden dimension 128. The encoder ¢ leverages a CNN architecture while ¢ lever-
ages a CNN-LSTM architecture. Inference is performed by determining wiperreq Such that
#(5) " Winferrea &~ 75 by least-squares, and taking the action maximizing (s, @, Winferred) ' Winferred
at each step. During training rollouts, we leverage generalized policy improvement (GPI), select-
ing num_gpi_samples = 10 distinct skills and choosing a = argmaxwewu{z}_’aeAw(s, a,w)’ 2,
where |W| = num_gpi_samples and is sampled from the skill distribution, and z is the skill for
that rollout. Note this GPI implementation differs from the traditional VISR (12)) implementation as
it does not sample from a Von-Mises Fisher distribution centered at a base skill. Full training details,
default parameters, and model architectures are included in the Appendix.

For our codebase, we build on a VISR reimplementation: https://github.com/mjsargent/JAX_VISR
(22). The Atari games used are the MinAtar (27) versions as implemented in gymnax (15). We
additionally include preliminary CSF (28)) experiments in the Appendix.

4.1 BASELINES

We will now evaluate the baselines for VISR across the Breakout, Space Invaders, and Asterix
Atari environments (15). We performed 3 different training runs and plot the mean, min, and max
rewards of the runs at evaluation. We note in Figure [3] that lower skill-dimension (phi-dim in the
graph) generally corresponds to increased rewards. Similarly, in Figure f] we observe that in the
Spacelnvaders environment, the lower skill-dimension models tend to do better, and this behavior
is exceptionally apparent in the Asterix environment. Across the benchmarks, we find that d = 2
is optimal (with results differing slightly from (12), which use d = 2), and that increasing d often
corresponds to decreased performance.
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Figure 4: Average rewards on the Space Invader and Asterix MinAtar (27) Games for a VISR model
trained with varying skill dimension d and default parameters (see Appendix) The dark line is the
mean of three runs, with the shaded regions showing the max and min of trials. As reference points,
a DQN on Space Invaders achieves a reward of approximately 50 by 5 x 106 training frames and a
DQN on Asterix achieves a reward of approximately 17 by 5 x 10° training frames (27).

4.2 GENERALIZED POLICY IMPROVEMENT EVALUATIONS

We study the effect of increasing the number of skills sampled during Generalized Policy Improve-
ment (GPI) and present the results in Figure[5] Our implementation of VISR (22)) samples uniformly
over the skill space in addition to the rollout skill for choosing actions. This should allow for faster
policy improvement, and mitigate the concern that in higher-dimensional spaces, generalized policy
improvement requires more samples, as each sampled skill is likely less relevant to the rollout skill.
However, we increased num_gpi_samples to 40 and 80 in the Breakout environment but did not
observe an improvement in model performance for high-dimensional skills.

Breakout — avg_reward — num_gpi_samples=40

Breakout — avg_reward — num_gpi_samples=80

70
—— phi_dim=2 —— phi_dim=2
phi_dim=5 70 phi_dim=5
601 — phi_dim=10 —— phi_dim=10
—— phi_dim=20 601 —— phi_dim=20
50 1 —— phi_dim=40 —— phi_dim=40
50 4
T 40 2
2 2 40
5 5
=30 o
s s 30
———
20 20
10 10
0 0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

env_steps le7 env_steps le7

Figure 5: Average rewards on the Breakout MinAtar (27) Games for a VISR model trained with
varying skill dimension d, ablated num_gpi_samples, and otherwise default parameters (see Ap-
pendix). We test alternate settings of num_gpi_samples = 40 and = 80, with the default of 10 used
in Figure[3] The parameter num_gpi_samples represents the amount of samples used for generalized
policy improvement.

4.3 TRAJECTORY EVALUATIONS

We model the effect of increasing model complexity by increasing the trajectory length to 20 and
80 and present the results in Figure [f] Another datapoint is available in Figure [3] which uses the
baseline trajectory length 40. Although the performance for d = 10 and d = 40 improve for higher
trajectory length, the low-dimensional baselines d = 2 and d = 5 remain substantially stronger
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than the high-dimensional ablations. Our results suggest that longer trajectories do not address the
limitations of high-dimensional skills in VISR.
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Figure 6: Average rewards on the Breakout MinAtar Games for a VISR model trained with
varying skill dimension d, ablated traj_len, and otherwise default parameters (see Appendix). We
test alternate settings of traj_len = 20 and traj_len = 80, with the default of 40 used in Figure[3] The
parameter traj_len represents the rollout trajectory length.

4.4 LENGTH EVALUATIONS

We trained our VISR network for 10x as many steps as the base environment to determine whether
higher skill dimensions are advantaged on a long timescale and present the results in Figure[7] Al-
though the models tended to improve throughout training, there remained a gap between models
trained with different skill dimensions. Models trained with dimension d = 40 and d = 10 under-
performed the base model trained with d = 2.
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Figure 7: Average rewards on the Breakout MinAtar (27) Games for a VISR model trained with
ablated training length and otherwise default parameters (see Appendix). We train with x10 as
many training steps, with 2 x 10® total environment frames. We do not find that increased training
time leads to disproportional improvement for larger d.
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4.5 MODEL CAPACITY

We hypothesized that LSTM-based models, which can leverage the trajectory history, are better
capable of learning interesting skills that span time. For this experiment, we consider two different
model bases for v, we test LSTMs with hidden state 8,32, and 128, and we test a CNN with 16
features, 3 x 3 convolution region, and a downstream MLP with hidden dimension 128.
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Figure 8: Average rewards on the Breakout MinAtar (27) Games for a VISR model trained with
varying encoding architecture for v, varying skill dimension d, and otherwise default parameters
(see Appendix). We test a CNN-MLP architecture and CNN-LSTM architecture for 1), ranging the
hidden dimension of the LSTM from 8 to 128 (baseline). We do not not notice any convincing trends
between the encoder strength and performance for larger d.

5 DISCUSSION AND CONCLUSION

As confirmed in our experiments, MISL-based methods such as VISR tend to decrease in perfor-
mance as skill dimension d increases. We hypothesized that increasing the length of training time,
increasing trajectory length, and leveraging time-dependent encoders would lead to disproportion-
ally stronger performance with high skill dimension. However, our experimental results do not
show a convincing connection between any of the expected attributes and a disproportionate in-
crease, leading us to reject our current hypotheses. We remain uncertain on practical techniques for
improving performance with large d and whether this is crucial for more complex environment.

We have promising preliminary results for CSF in the Appendix, showing that larger hidden dimen-
sion corresponds to increased state-coverage on a block environment. However, due to only having
the capacity for a single training run for each configuration, we require more experimentation before
drawing conclusions in the CSF environment.

For future work, we are interested in continuing the CSF experiments and evaluating environments
with more axis of movement and greater complexity.
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APPENDIX

VISR IMPLEMENTATION DETAILS

VISR Configuration

Description Default
num_gpi-samples Number of samples for GPI 10
trajectory-length Rollout length 40
num_eval_envs Evaluation Batch Size 16
gamma Decay relationship between v and ¢ 0.95
epsilon Policy exploration parameter 0.1
1r Model learning rate 3x 1074
num_steps Amount of epochs 30,000
target_update_frequency Updated frequency for target model 100
recurrent Recurrent layers in model, O for no recurrence 1
lstm_size Hidden dimension of LSTM or CNN model 128
seed Randomness for training run. We always test with seeds 1, 2, 3. [1,2,3]

Table 1: Default training configuration details for the VISR model runs.

The following is the CNN-LSTM default architecture used for ¥ in VISR (22).
class CNNLSTMPsiMultiBranch (nn.Module) :
phi_dim: int

num_a: int
lstm_size: int

@nn.compact
def _ call__ (self, x, w, lstm_state):

# expects a tuple of (x, (h, c))

x = nn.Conv (features=16, kernel_size=(3, 3)) (x)
X = nn.relu(x)

x = x.reshape ((x.shape[0], -1)) # flatten

X = jnp.concatenate((x, w), axis=-1)

x = nn.Dense (features=256) (x)

X = nn.relu(x)

lstm_state, x = nn.OptimizedLSTMCell (features=self.lstm_size) (lstm_state, x)
X = jnp.concatenate (
[
nn.Dense (features=self.phi_dim) (nn.relu(nn.Dense (features=256) (x)))
for 1 in range(self.num_a)
1,
axis=-1,
)

return x, lstm_state

The following is the CNN architecture used for ¢ when ablating model capacity in VISR (22).

class CNNPsiMultiBranch (nn.Module) :
phi_dim: int
num_a: int

@nn.compact

def _ _call__ (self, x, w):

= nn.Conv (features=16, kernel_size=(3, 3)) (x)

= nn.relu(x)

= x.reshape ((x.shape[0], -1)) # flatten
jnp.concatenate ((x, w), axis=-1)

= nn.Dense (features=256) (x)

= nn.relu(x)

jnp.concatenate (

[

XXX X X X X
I

nn.Dense (features=self.phi_dim) (nn.relu(nn.Dense (features=256) (x)))
for 1 in range(self.num_a)

I

axis=-1,
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)

return x

The following is the CNN architecture used for ¢ in VISR (22)).

class CNNPhi (nn.Module) :
output_size: int

@nn.compact
def _ call__ (self, x):

= nn.Conv (features=16, kernel_size=(3, 3)) (x)
= nn.relu(x)
= x.reshape((x.shape[0], -1)) # flatten

= nn.Dense (features=256) (x)

= nn.relu(x)

= nn.Dense (features=self.output_size) (x)
return x

XXX X X X

All default parameters, model architectures, and otherwise are from the original codebase:
https://github.com/mjsargent/JAX_VISR.

CSF IMPLEMENTATION DETAILS

CSF Configuration

Description Default
1r Learning rate 3x 1074
batch_size Batch size 256
repr-hidden_dims State representation network hidden dimensions (256, 256)
sf_hidden_dims Successor feature network hidden dimensions (256, 256)
actor.hidden.dims Actor network hidden dimensions (256, 256)
discount Discount factor 0.9
tau Target network update rate for EMA 0.005
skill.dim Skill dimension 2
g-agg Aggregation for twin Q-networks (“mean” or “min”) “mean”
target_entropy Target entropy action entropy (log |.A|) log(6)
num-steps Number of training steps 1,000,000
episode_length Length of Sokoban episode, in steps 10
grid.size Width and height of Sokoban grid 6

Table 2: Default training configuration details for CSF runs.

Our CSF implementation is based on an unreleased JAX implementation authored by Chongyi
Zheng and Catherine Ji, which in turn is based on the OGBench (19)) goal-conditioned RL eval-
uation benchmark. We modified this implementation using the REINFORCE(26) policy gradient to
achieve gradient flow through the categorical action space.

We evaluated our CSF implementation on a modification of the Sokoban environment introduced by
(5). We removed the boundary of the environment so that the agent wraps around when it moves off
the edge. We modified the environment to revert to the initial state on environment reset rather than
generate a new level on environment reset.

PRELIMINARY RESULTS FOR CSF

We tested the effects of varying network architecture and representation dimension on the CSF
representation loss. We initialized the actor, successor feature, and state representation networks
with the same depth and width. We observed interesting findings when scaling encoder depth in
Figure With deeper networks, we see that the representation loss is driven lower for higher-
dimensional skill latents. The gap between the high-dimensional skill latents widens as networks
get deeper. Interestingly, we do not see the same phenomenon for wider networks.

We also studied the effect of network architecture and skill dimension on the state coverage. We
calculated by sampling skills, performing episode_length-step rollouts with temperature O us-
ing each skill and counting the number of unique states visited. We tested two network shapes: one
with 2 layers and one with 4 layers. Our results are presented in Figure [/} It seems that high skill
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Figure 9: Representation loss for a CSF agent trained with varying network depths and skill dimen-
sion d. (Clockwise, starting at top left: width 256, depth 2; width 256, depth 3; width 512, depth 2;
width 512, depth 3). Deeper networks lead to a divergence in representation loss with varying skill
dimension; wider networks do not.

14



Shah & Shustin, Scaling MISL to Larger Skill Spaces

dimensions are important for deep networks to learn diverse trajectories. State coverage was con-
sistently higher for high skill dimension when the network is deep, and noisier when the network is
shallow. An interesting direction for future work would be training this agent with more seeds and
further studying the relationship between actor network architecture and skill dimension.

State Coverage vs Training Epoch -- Network size ['256, '256'] State Coverage vs Training Epoch - Network size ['256', '256', ‘256", '256']

— sildim. 2 — sildim. 2
0 skl gim. 4 Skl dim. 4
— kil gim. 8 701 — Skildim. 8
— kil dim. 16 — kil dim. 16
704 — skill dim. 32 — skil dim. 32

Figure 10: State coverage for a CSF agent trained with varying depths and skill dimension d. (Left
to right: width 256, depth 2; width 256, depth 4). State coverage tends to increase with higher skill
dimension for deep networks.
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