
Hazan Lab
Princeton University

SpectraLDS: Distilling Spectral Filters
into Constant-Time Recurrent Models

Motivation
Spectral filtering
STU
Our work
Experiments

Motivation

Architectures

RNNs Transformers Spectral Filtering

Motivation
Spectral filtering
STU
Our work
Experiments

Recurrent Neural Networks

Confidential — Google DeepMind

● O(L) time complexity

● But sequential

○ Need to compute

● Unstable (exploding/vanishing gradients)

Motivation
Spectral filtering
STU
Our work
Experiments

Transformers

Confidential — Google DeepMind

Self-attention scales as O(L2)
in sequence length.

Confidential — Google DeepMind

Image source: Child et al. (2019)

Self-attention

Confidential — Google DeepMind

Can we do better?

Efficient and provable RNNs
for long contexts?

Motivation
Spectral filtering
STU
Our work
Experiments

Spectral filtering

Confidential — Google DeepMind

Linear dynamical systems

Confidential — Google DeepMind

Learning optimal weights for
factors of A, B, C, D is hard
(non-convex)

Confidential — Google DeepMind

Learning optimal weights for
relaxed parameterizations is easy
(convex)

Confidential — Google DeepMind

● Consider the one-dimensional case (A = a, B,C = I, D = 0 for simplicity)

● We are interested in vectors of the type

Intuition

Confidential — Google DeepMind

It’s a Hankel matrix!

Confidential — Google DeepMind

Eigenvalues of Hankel
matrices decay
exponentially.

Confidential — Google DeepMind

Confidential — Google DeepMind

†Figures from the Spectral SSM paper (arXiv: 2312.06837

Confidential — Google DeepMind

Featurization.

Confidential — Google DeepMind

● Set to be the top-k eigenvectors of the system matrix Z

● Featurization is the convolution of input sequence with filters

● These filters are universal – they work for any sequence prediction task!

● Convolutions using FFT run in O(L log L) time

○ Featurizing with k filters runs in O(k⋅L log L) time

○ Suffices that k ~ O(log L), so we get roughly O(L log2 L) time

● Convolutions = GPU-friendly!

○ NOT sequential, unlike RNNs

○ ==> Asymptotic analysis is meaningful

● Theoretical guarantees

○ Sublinear regret on the order of (near-optimal!)

Confidential — Google DeepMind

Fixed Featurization

Learned params M,
scales as e-i/log(L)

so k ~ log(L)

Fixed featurization

*𝜇(𝛼) for any 𝛼 has all but 𝜖 mass concentrated on the top eigenvectors of Z.

Motivation
Spectral filtering
STU
Our work
Experiments

Spectral Transform Unit

Confidential — Google DeepMind

Input
sequence

Learned projections

Fixed Spectral filters
(precomputed)

Output
prediction

Confidential — Google DeepMind

Transformers RNNs / SSMs STU

O(L2) complexity O(L) complexity O(L log L) complexity

Powerful but slow Fast but unstable Fast AND stable

Memory hungry Training tricks needed Simple to train

Motivation
Spectral filtering
STU
Our work
Experiments

Our work

What if we could distill the STU back to an LDS
representation?

Confidential — Google DeepMindDistilling STU layers into LDS layers

Fast Inference

● After training a Flash STU (Language) model, we
distill the STU layers into LDS layers

○ O(1) token generation
○ Allows for (very) fast language models

Generating 1 token:

● Transformers - O(prompt length + generation length) - memory & compute

● RNNs/SSMs - O(1) - memory & compute

● Flash STU - O(k log L) ≈ O(log² L) - compute

● Distilled STU - O(1) - memory & compute

How do we do distill the STU back to an LDS?
By the spectral filtering theorem, where M is the spectral coefficients matrix, Φ are the k spectral
filters, Ψ are L LDS filters of form (1 α α2 . . . αL−1), and Γ are the scalars provided by the b and c
matrices, the following holds:

How do we do distill the STU back to an LDS?
By the spectral filtering theorem, where M is the spectral coefficients matrix, Φ are the k spectral
filters, Ψ are L LDS filters of form (1 α α2 . . . αL−1), and Γ are the scalars provided by the b and c
matrices, the following holds:

We first prove that a matrix exists that transforms the spectral filters back into an LDS:

How do we do distill the STU back to an LDS?

How do we do distill the STU back to an LDS?

We then introduce our algorithm and prove that it provides such an M.

How do we do distill the STU back to an LDS?

We provide a practical algorithm that provides such a matrix M.

The spectral filters successfully approximated with our LDS representation.

From fitting the filters to fitting any STU instantly

Motivation
Spectral filtering
STU
Our work
Experiments

Experiments

No degradation in performance on language benchmarks using LDS representation.

LDS implementation grows linearly with sequence length generated, faster than the convolutional implementations.

Confidential — Google DeepMind

○ STU, a neural network architecture with subquadratic time complexity and leading

performance

○ Can provably learn symmetric marginally stable LDS

■ Can learn more difficult settings in practice

○ STU to LDS Distillation - O(1) Language Models

○ The first method for system identification of an LDS of arbitrarily high effective memory

with performance guarantees on the loss

Recap

Motivation
Spectral filtering
STU
Our work
Experiments

Thanks!

