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Recurrent Neural Networks
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● O(L) time complexity

● But sequential

○ Need            to compute

● Unstable (exploding/vanishing gradients)
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Transformers
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Self-attention scales as O(L2) 
in sequence length.
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Image source: Child et al. (2019)

Self-attention
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Can we do better?

Efficient and provable RNNs 
for long contexts?
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Spectral filtering
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Linear dynamical systems
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Learning optimal weights for 
factors of A, B, C, D is hard 
(non-convex)
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Learning optimal weights for 
relaxed parameterizations is easy 
(convex)
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● Consider the one-dimensional case (A = a, B,C = I, D = 0 for simplicity)

● We are interested in vectors of the type  

Intuition
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It’s a Hankel matrix!
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Eigenvalues of Hankel 
matrices decay 
exponentially.
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†Figures from the Spectral SSM paper (arXiv: 2312.06837
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Featurization.
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● Set                          to be the top-k eigenvectors of the system matrix Z

● Featurization is the convolution of input sequence with filters

● These filters are universal – they work for any sequence prediction task!

● Convolutions using FFT run in O(L log L) time

○ Featurizing with k filters runs in O(k⋅L log L) time

○ Suffices that k ~ O(log L), so we get roughly O(L log2 L) time

● Convolutions = GPU-friendly!

○ NOT sequential, unlike RNNs

○ ==> Asymptotic analysis is meaningful

● Theoretical guarantees

○ Sublinear regret on the order of            (near-optimal!)
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Fixed Featurization 

Learned params M,
scales as e-i/log(L) 

so k ~ log(L) 

Fixed featurization 

*𝜇(𝛼) for any 𝛼 has all but 𝜖 mass concentrated on the top eigenvectors of Z.  
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Spectral Transform Unit
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Input 
sequence

Learned projections

Fixed Spectral filters 
(precomputed) 

Output 
prediction
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Transformers RNNs / SSMs STU

O(L2) complexity O(L) complexity O(L log L) complexity

Powerful but slow Fast but unstable Fast AND stable

Memory hungry Training tricks needed Simple to train
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Our work



What if we could distill the STU back to an LDS 
representation? 



Confidential — Google DeepMindDistilling STU layers into LDS layers



Fast Inference

● After training a Flash STU (Language) model, we 
distill the STU layers into LDS layers

○ O(1) token generation
○ Allows for (very) fast language models 

Generating 1 token:

● Transformers - O(prompt length + generation length) - memory & compute

● RNNs/SSMs - O(1) - memory & compute

● Flash STU - O(k log L) ≈ O(log² L) - compute

● Distilled STU  - O(1) - memory & compute



How do we do distill the STU back to an LDS?  
By the spectral filtering theorem, where M is the spectral coefficients matrix, Φ are the k spectral 
filters, Ψ are L LDS filters of form (1 α α2 . . . αL−1), and Γ are the scalars provided by the b and c 
matrices, the following holds:



How do we do distill the STU back to an LDS?  
By the spectral filtering theorem, where M is the spectral coefficients matrix, Φ are the k spectral 
filters, Ψ are L LDS filters of form (1 α α2 . . . αL−1), and Γ are the scalars provided by the b and c 
matrices, the following holds:

We first prove that a matrix exists that transforms the spectral filters back into an LDS:



How do we do distill the STU back to an LDS?  



How do we do distill the STU back to an LDS?  

We then introduce our algorithm and prove that it provides such an M.



How do we do distill the STU back to an LDS?  

We provide a practical algorithm that provides such a matrix M. 



The spectral filters successfully approximated with our LDS representation. 



From fitting the filters to fitting any STU instantly
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No degradation in performance on language benchmarks using LDS representation. 



LDS implementation grows linearly with sequence length generated, faster than the convolutional implementations. 
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○ STU,  a neural network architecture with subquadratic time complexity and leading 

performance

○ Can provably learn symmetric marginally stable LDS

■ Can learn more difficult settings in practice

○ STU to LDS Distillation - O(1) Language Models

○ The first method for system identification of an LDS of arbitrarily high effective memory 

with performance guarantees on the loss

Recap 
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Thanks!


