SpectraLDS: Distilling Spectral Filters into Constant-Time Recurrent Models

Hazan Lab Princeton University

Motivation

Spectral filtering STU Our work Experiments

Architectures

Recurrent Neural Networks

Motivation

Spectral filtering STU Our work Experiments

- O(L) time complexity
- But sequential
 - \circ Need s_{t-1} to compute y_t
- Unstable (exploding/vanishing gradients)

Motivation

Spectral filtering STU Our work Experiments

Self-attention scales as $O(L^2)$ in sequence length.

Self-attention

Image source: Child et al. (2019)

Can we do better?

Efficient and **provable** RNNs for long contexts?

11 **Spectral filtering**

Motivation Spectral filtering

STU Our work Experiments

Linear dynamical systems

 $x_t = Ax_{t-1} + Bu_t$ $y_t = Cx_t + Du_t$

Learning optimal weights for factors of *A*, *B*, *C*, *D* is **hard** (non-convex)

$$y_t^{\text{LDS}} = (CB+D)u_t + CABu_{t-1} + CA^2Bu_{t-2} + CA^3Bu_{t-3} + \dots$$

Learning optimal weights for relaxed parameterizations is **easy** (convex)

$$\hat{y}_t = M_0 u_t + M_1 u_{t-1} + M_2 u_{t-2} + \dots$$

Intuition

• Consider the one-dimensional case (A = a, B,C = I, D = 0 for simplicity)

$$y_t^{\text{LDS}} = (CB + D)u_t + CABu_{t-1} + CA^2Bu_{t-2} + CA^3Bu_{t-3} + \dots$$
$$y_t^{\text{LDS}} = 1 \cdot u_t + a \cdot u_{t-1} + a^2 \cdot u_{t-2} + a^3 \cdot u_{t-3} + \dots$$
$$y_t^{\text{LDS}} = [1, a, a^2, \dots a^L][u_t, u_{t-1}, u_{t-2} \dots]^\top$$

• We are interested in vectors of the type $\mu(a) \triangleq [1, a, a^2, \dots a^L] \in \mathbb{R}^L$ for all $a \in [0, 1]$

It's a Hankel matrix!

Eigenvalues of Hankel matrices decay **exponentially.**

Figure 1: The filters obtained by the eigenvectors of Z.

Figure 4: Error obtained by an STU layer as a function of the model parameter K. We observe an exponential drop in the reconstruction loss as predicted by the analysis.

Featurization.

- Set $\Phi_1 \dots \Phi_K$ to be the *top-k* eigenvectors of the system matrix Z
- Featurization is the **convolution** of input sequence $u_1 \dots u_L$ with filters $\Phi_1 \dots \Phi_K$
- These filters are universal they work for any sequence prediction task!
- Convolutions using FFT run in O(L log L) time
 - Featurizing with *k* filters runs in **O(k·L log L) time**
 - \circ Suffices that k ~ O(log L), so we get roughly O(L log^2 L) time
- Convolutions = GPU-friendly!
 - NOT sequential, unlike RNNs
 - ==> Asymptotic analysis is meaningful
- Theoretical guarantees
 - Sublinear regret on the order of \sqrt{L} (near-optimal!)

* $\mu(\alpha)$ for any α has all but ϵ mass concentrated on the top eigenvectors of Z.

$$\underbrace{y_t^{\text{LDS}} \sim \sum_{i=1}^K M_i \cdot \langle \Phi_i, [u_t, u_{t-1}, u_{t-2} \dots] \rangle}_{\text{Fixed Featurization}}}$$

Spectral Transform Unit

5

Motivation Spectral filtering STU Our work Experiments

Figure 2: Mean squared error $\|\hat{y}_{t+1} - y_{t+1}\|^2$ of the different layers on a single sequence from an LDS.

Model	MMLU (acc ↑)	Hella. (acc_n ↑)	PIQA (acc_n ↑)	BoolQ (acc ↑)	Wino. (acc ↑)	CSQA (acc ↑)	OBQA (acc_n ↑)	ARC-e (acc ↑)	ARC-c (acc_n ↑)	Average (↑)
Flash STU 550M	26.31	28.64	60.94	52.23	50.67	19.66	26.00	45.16	23.63	37.03
Mamba-2 Hybrid 546M	25.82	28.51	57.62	51.87	49.09	18.67	27.60	44.36	22.53	36.23
Mamba-2 561M	24.15	26.83	57.62	46.54	50.12	20.23	26.60	44.95	23.38	35.60
Transformer 564M	25.16	26.85	56.53	51.41	50.51	19.82	25.00	38.64	21.25	35.02

Transformers	RNNs / SSMs	STU			
O(L ²) complexity	O(L) complexity	O(L log L) complexity			
Powerful but slow	Fast but unstable	Fast AND stable			
Memory hungry	Training tricks needed	Simple to train			

Motivation Spectral filtering STU Our work Experiments

What if we could distill the STU back to an LDS representation?

Distilling STU layers into LDS layers

Figure 12: Flash STU Model Architecture, alternating between STU-T and (sliding window) attention[†].

Fast Inference

Generating 1 token:

- Transformers O(prompt length + generation length) memory & compute
- RNNs/SSMs O(1) memory & compute
- Flash STU O(k log L) ≈ O(log² L) compute
- Distilled STU O(1) memory & compute

- After training a Flash STU (Language) model, we distill the STU layers into LDS layers
 - O(1) token generation
 - Allows for (very) fast language models

By the spectral filtering theorem, where *M* is the spectral coefficients matrix, Φ are the k spectral filters, Ψ are L LDS filters of form (1 $\alpha \alpha^2 \dots \alpha^{L-1}$), and Γ are the scalars provided by the b and c matrices, the following holds:

$$\|M \Phi_{1:k} - \Gamma \Psi_L(\alpha_1, \dots, \alpha_k)\| \leq c k L e^{-\frac{k}{\log L}}$$

By the spectral filtering theorem, where *M* is the spectral coefficients matrix, Φ are the k spectral filters, Ψ are L LDS filters of form (1 $\alpha \alpha^2 \dots \alpha^{L-1}$), and Γ are the scalars provided by the b and c matrices, the following holds:

$$\|M \Phi_{1:k} - \Gamma \Psi_L(\alpha_1, \dots, \alpha_k)\| \leq c \, k \, L \, e^{-\frac{k}{\log L}}$$

We first prove that a matrix exists that transforms the spectral filters back into an LDS:

Theorem 1. For any $\alpha_1, \ldots, \alpha_k$ such that $\Psi_L(\alpha_i)$ are linearly independent, there exists $\widetilde{M} \in \mathbb{R}^{k \times k}$ such that

$$\left\| \Phi_{1:k} - \widetilde{M} \Psi_L(\alpha_1, \dots, \alpha_k) \right\| \leq c k L e^{-\frac{k}{\log L}}.$$

Theorem 1. For any $\alpha_1, \ldots, \alpha_k$ such that $\Psi_L(\alpha_i)$ are linearly independent, there exists $\widetilde{M} \in \mathbb{R}^{k \times k}$ such that

$$\left\| \Phi_{1:k} - \widetilde{M} \Psi_L(lpha_1, \dots, lpha_k) \right\| \leq c k L e^{-rac{k}{\log L}}.$$

Theorem 1. For any $\alpha_1, \ldots, \alpha_k$ such that $\Psi_L(\alpha_i)$ are linearly independent, there exists $\widetilde{M} \in \mathbb{R}^{k \times k}$ such that

$$\left\| \Phi_{1:k} \ - \ \widetilde{M} \, \Psi_L(lpha_1,\ldots,lpha_k)
ight\| \ \leq \ c \, k \, L \, e^{-rac{k}{\log L}}.$$

We then introduce our algorithm and prove that it provides such an M.

Theorem 2. For any $\alpha_1, \ldots, \alpha_k$ such that $\Psi_L(\alpha_i)$ are linearly independent, Algorithm 2 provides $\widetilde{M} \in \mathbb{R}^{k \times k}$ such that

$$\left\| \Phi_{1:k} - \widetilde{M} \Psi_L(\alpha_1, \ldots, \alpha_k) \right\| \leq c \, k \, L \, e^{-\frac{k}{\log L}}.$$

We provide a practical algorithm that provides such a matrix M.

Algorithm 2 LDS Filters to Matrix Representation

1: **Input:** Learned STU filters $\Phi_{1:k} \in \mathbb{R}^{k \times L}$ 2: **Output:** System matrices $\{A, B, C\}$ of a discrete-time LDS.

3: Initialize
$$\Psi \in \mathbb{R}^{N \times L}$$
 and $\Theta \in \mathbb{R}^{N \times k}$ as empty matrices.

- 4: for i = 1, ..., N do
- 5: Sample (a_i, b_i, c_i) with $|a_i| \leq 1$
- 6: Train an STU of filter length L on the 1D-LDS defined by (a_i, b_i, c_i)
- 7: Let $\psi_i \in \mathbb{R}^{1 \times L}$ be the LDS impulse response; update the i^{th} row of Ψ by $\Psi[i, :] \leftarrow \psi_i$.
- 8: Let $\boldsymbol{\theta}_i \in \mathbb{R}^{1 \times k}$ be the corresponding learned STU weights; update the i^{th} row of Θ by $\Theta[i, 9]$: end for 10: Pick a row-subset $\boldsymbol{\Psi}_{\text{sub}}, \Theta_{\text{sub}}$, and compute $\widetilde{M} = \Theta_{\text{sub}}^{\dagger}$ such that $\Phi_{1:k} \approx \widetilde{M} \boldsymbol{\Psi}_{\text{sub}}$ 11: repeat
- 12: Let $i^* \in \{1, \dots, N\} \setminus I_{\text{sub}}$ be the index minimizing $\|\Theta[i, :]^{\dagger} \Phi_{1:k} \Psi[i, :]\|_F^2$; update $I_{\text{sub}} \leftarrow \Psi_{\text{sub}} \leftarrow [\Psi_{\text{sub}}; \Psi[i^*, :]]$, and $\Theta_{\text{sub}} \leftarrow [\Theta_{\text{sub}}; \Theta[i^*, :]]$.
- 13: Recompute $\widetilde{M} = \Theta_{\text{sub}}^{\dagger}$ and evaluate $\|\Phi_{1:k} \widetilde{M} \Psi_{\text{sub}}\|_{F}$.
- 14: until convergence
- 15: Define loss $\widetilde{E}(\widetilde{M}) = \|\Phi_{1:k} \widetilde{M} \Psi_{\text{sub}}\|_F^2$
- 16: **repeat**
- 17: Compute $\nabla_{\widetilde{M}} E(\widetilde{M})$

18: Update
$$\widetilde{M} \leftarrow \widetilde{M} - \eta \nabla_{\widetilde{M}} E(\widetilde{M})$$

19: until convergence

```
20: Using \widetilde{M}, select the index set I^* that minimizes \|\Phi_{1:k} - \widetilde{M} \Psi_{\text{sub}}(i)\|_F^2 and collect \{(a_i, b_i, c_i) 
21: Set \mathbf{A} \leftarrow \text{diag}(\{a_i\}_{i \in I^*}), \quad \mathbf{B} \leftarrow (b_i)_{i \in I^*}, \quad \mathbf{C} \leftarrow \widetilde{M} \text{diag}(\{c_i\}_{i \in I^*})
```

22: return $\{A, B, C\}$

The spectral filters successfully approximated with our LDS representation.

From fitting the filters to fitting any STU instantly

$$\left\| \Phi_{1:k} - \widetilde{M} \Psi_L(\alpha_1, \dots, \alpha_k) \right\| \leq \epsilon$$

$$\implies M_i \cdot \langle \Phi_i, [u_t, u_{t-1}, u_{t-2} \dots] \rangle \approx M_i \cdot \langle \sum_{j=1}^K \widetilde{M}_j \Psi_j, [u_t, u_{t-1}, u_{t-2} \dots] \rangle$$

$$\implies \sum_{i=1}^{K} M_i \cdot \langle \Phi_i, [u_t, u_{t-1}, u_{t-2} \dots] \rangle \approx \sum_{i=1}^{K} M_i \cdot \langle \sum_{j=1}^{K} \widetilde{M}_j \Psi_j, [u_t, u_{t-1}, u_{t-2} \dots] \rangle$$

$$\implies \boldsymbol{y}_t^{STU} \approx M \widetilde{M} \left\langle \left[\vec{1}, \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \end{bmatrix}, \begin{bmatrix} \alpha_1^2 \\ \alpha_2^2 \\ \vdots \end{bmatrix}, \ldots \right], [u_t, u_{t-1}, u_{t-2} \ldots] \right\rangle$$

$$\implies y_t^{STU} \approx \sum_{i=0}^t CA^i B u_{t-i} = y_t^{LDS} \qquad \qquad \text{Where } A = \begin{bmatrix} \alpha_1 & 0 & \dots \\ 0 & \alpha_2 \\ \vdots & & \end{bmatrix}, B = \begin{bmatrix} 1\\ 1\\ 1\\ \vdots \end{bmatrix}, C = M\widetilde{M}, \text{ and } \Psi = \begin{bmatrix} \vec{1}, \begin{bmatrix} \alpha_1\\ \alpha_2\\ \vdots \end{bmatrix}, \begin{bmatrix} \alpha_1^2\\ \alpha_2^2\\ \vdots \end{bmatrix}, \dots \end{bmatrix}$$

-1-

Motivation Spectral filtering STU Our work Experiments

Model	MMLU	Hella.	PIQA	BoolQ	Wino.	CSQA	OBQA	ARC-e	ARC-c	Average
Flash STU 550M	22.99	26.51	58.00	39.30	52.01	19.49	29.80	39.10	23.12	34.48
LDS	22.98	26.55	58.22	39.33	52.01	19.49	29.40	39.02	23.04	34.34
Flash STU Std. Err.	0.35	0.44	1.15	0.85	1.40	1.13	2.05	1.00	1.23	<u></u>
LDS Std. Err.	0.35	0.44	1.15	0.85	1.40	1.13	2.04	1.00	1.23	-

No degradation in performance on language benchmarks using LDS representation.

Runtime vs Sequence Length for LDS Only Implementations

LDS implementation grows linearly with sequence length generated, faster than the convolutional implementations.

Recap

- STU, a neural network architecture with subquadratic time complexity and leading performance
- Can provably learn symmetric marginally stable LDS
 - Can learn more difficult settings in practice
- STU to LDS Distillation O(1) Language Models
- The first method for system identification of an LDS of arbitrarily high effective memory with performance guarantees on the loss

Motivation Spectral filtering STU Our work Experiments