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1 Overview

In this paper, we will survey the development and lit-
erature behind State Space Models (SSMs), a model
architecture and approach inspired by control theory
that is now poised to succeed transformers for sequence
modeling tasks. We will first discuss the origins of SSMs
as linear dynamical systems, how SSMs extend existing
deep sequence-to-sequence architectures, and the devel-
opment of deep architectures around SSMs. We will
also discuss recent research and results from Princeton
faculty in State Space Models, such as Mamba [7] and
Spectral Transformers [5].

The exposition of our paper will largely follow the
exposition in the dissertations of Albert Gu [6] and Tri
Dao [3], with some topic inspiration from the Hugging-
face Community Blog on the topic [2] and the foun-
dational S4 paper [10] and covering interesting results
along the way.

2 Linear Dynamical Systems and Background

2.1 The Continuous SSM

A State Space Model is designed for the task of sequence-
to-sequence prediction, which involves modeling an un-
known function f : u(t) ∈ Rn → y(t) ∈ Rm, where u(t)
is the input function and y(t) the output function. For
any practical use case, u(t) and y(t) are discretized to
sequences. The state space model aims to approximate
f with the differential equations:

x′(t) = Atx(t)+Btu(t)

y(t) =Ctx(t)+Dtu(t)
(1)

Where At ,Bt ,Ct ,Dt are matrices of the appropriate
dimension and characterize the SSM, and x(t) ∈ Rh is
known as the hidden state. We can view x(t) as stor-
ing the state of the system and all necessary context
for determining yt . The matrices At ,Bt ,Ct ,Dt may have
time-dependent value, but it is more common to consider
the time-invariant SSM, which has fixed A,B,C,D. As
the update equations in Eq. 1 are linear, we refer to a
system modeled by Eq. 1 as a linear dynamical system
(LDS).

SSMs are broadly used in within control theory and
are related to Hidden Markov Models [10, 15]. We also
note that many authors use the term State Space Model
differently. In some exposition the linear dynamical sys-
tem is referred to as the linear SSM, and State Space
Models are used to refer to any sequence-to-sequence
model formulated recurrently with a hidden state. In this
exposition, we will use SSM as referring to a learned
model based on the update equations Eq. 1, and an LDS
as a general system obeying Eq. 1, the SSM update
equation.

2.2 The Discrete SSM

In practice we typically sample signals at fixed intervals
∆, and can then approximate the (time-invariant) con-
tinuous SSM with the discrete or recurrent SSM, which
has recurrence equations [11]:

xt = Āxt−1 + B̄ut

yt = C̄xt + D̄ut
(2)

Where, Ā, B̄,C̄, D̄ are defined by:



Ā = e∆A

B̄ = A−1e(∆A−I)B

C̄ =C

D̄ = D

(3)

Note that as ∆ → 0, we recover the initial continuous
SSM.

Despite the simple evolutionary rules, state space
models prove very expressive for natural systems and
can be expanded upon to handle more complex systems,
such as language [1].

2.3 Convolutional Representation

An additional benefit of the simple structure is that SSMs
have a convolutional representation. Note that, with ∗
being the convolution operator:

yt = C̄xt + D̄ut = C̄(Āxt−1 + B̄ut)+ D̄ut

= D̄ut +
t−1

∑
i=1

C̄ĀiB̄ut−i

= ⟨D̄+C̄B̄,C̄ĀB̄,C̄Ā2B̄, . . .⟩ ∗u

= K̄ ∗u

(4)

In this sense, an SSM can almost be viewed as a set
of convolutional filters on an input sequence, lending
itself to parallelization [19]. However, unlike traditional
convolutional filters, such as in the CNN model [16], this
convolution has infinite width. We can view the differ-
ence between the continuous, discrete, and convolutional
representation in Fig. 1.

Figure 1: The multiple views of an SSM [11]

2.4 Considerations as a model

Despite the underlying operations being linear, the SSM
empirically has strong representation capacity, as we
will show in later results.

A very desirable trait in sequence-to-sequence mod-
eling is the ability to model long range dependencies.
Typically, for the SSM, we assume ||Ā||2 ≤ 1 where || · ||2
is the spectral norm, as otherwise the magnitude of pre-
dicted yt may increase exponentially, leading to a poorly
behaved system [12]. For δ = 1− ||Ā||2, the effective
memory of an SSM is O(1

δ
), as later terms will have

a negligible contribution. [1]. However, as the SSM is
highly non-convex in its parameters, as the matrix Ā is
raised to large powers, it is often a challenge to fit the
SSM parameters to a system. This issue is exacerbated
for systems with long-term dependencies, as the SSM
needs to learn a system close to instability (δ near 0) and
optimization techniques may veer into instability.

The power of the SSM structures comes through im-
pressive representational capacity, quick inference when
suitable structure is imposed, parallelization training,
and simple system evolution. Together, these proper-
ties make an SSM a suitable basis for designing larger,
more-powerful deep models [1].

However, it is worth noting that a naive implemen-
tation will struggle with learning a system with high
effective memory and have computational bottlenecks
from matrix multiplication [10].

For many of the works we discuss, D is often assumed
to be 0, or alternatively ignored, as D parameterizes a
skip connection that could otherwise be learned by the
remainder of the system.

3 Deep Sequence Models (RNNs and LSTMs)

Recently, deep sequence models have had great success
in tasks ranging from translation, text prediction, image
generation, and solving prediction tasks in control the-
ory [1]. Many problems of practical importance can be
phrased as sequence prediction tasks and having models
capable of general input-to-output understanding paves
the way for models to understand segments of the world
closer to how we do. The current deep architectures for
sequence to sequence prediction can be largely catego-
rized as [6]:

• Convolutional neural networks (CNN): Leverage
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convolutional filters to accumulate sequence infor-
mation.

• Recurrent neural networks (RNN): Leveraging re-
current computation with a maintained state.

• Transformers: Leverage attention to reconstruct rel-
evant state for each output.

Sequence to sequence models generally have limita-
tions due to the large and variable input size. Frequently,
models will struggle to capture dependencies due to hav-
ing a fixed context size, optimization challenges such as
a vanishing gradient, and compute limitations for long
sequences [6]. Below, we introduce these three architec-
tures, describe their major limitations, and discuss how
state space models incorporate attributes of these three
architectures.

3.1 Convolutional neural networks

Since the introduction of LeNet by LeCun et al. in 1998
to classify handwritten digits [17], CNNs have become
the standard architecture for classifying and processing
images and many other datasets with local structure.
This has led to their widespread adoption in computer
vision, where they remain many practitioners’ tool of
choice.

Historically, early convolutional neural networks
(such as AlexNet, designed by Alex Krizhevsky et al. for
the 2012 ImageNet competition) [16] were able to out-
perform competing models with hand-crafted features
due to their ability to learn increasingly complex sets of
features directly from the training dataset. In particular,
CNNs rely on the use of a set of learned filters, small
matrices which are convolved over their (much larger)
input, to identify local regions of the input data that
"match" the various filters in the corresponding layer.

Figure 2: The architecture for LeNet, an early CNN used
on the MNIST dataset. [17]

Modern CNNs will often have a max pooling layer
after each convolutional layer to combine adjacent filter-
image dot products and promote the detection of non-
local features in later convolutional layers.

One major limitation of standard convolutional neu-
ral networks, however, is that their construction pre-
vents them from applying to sequences of varying size,
since the dimension of the weight matrices in the fully-
connected layers at the end of the network constrains
the size of each of the convolutional layers that comes
before it. This prevents them from becoming applied
to many instances of time-series data whose length is
not predefined (such as variable-length audio recordings
and natural text, among others). This issue is addressed
through recurrent neural networks, discussed below, al-
though such architectures suffer from their own share of
problems (such as the vanishing gradient problem).

3.2 Recurrent neural networks

Recurrent neural networks are best suited for time-series
data of variable length, where the hidden recurrent units
on which they are based are able to process the input se-
quentially while maintaining a memory of past timesteps.
More specifically, if (x(i))n

i=1 is a sequence of data, then
a recurrent neural network is a feed-forward neural net-
work defined by two relations [18]:

h(t) = σ(Whxx(t)+Whhh(t−1)+bh)

y(t) = softmax(Wyhh(t)+by)
(5)

where h(t) denotes the output of hidden layer t, y(t)

denotes the output of the RNN at time step t, and
Whx,Whh,Wyh,bh,by are learned parameters. The defin-
ing characteristic of recurrent neural networks (as op-
posed to deep feed-forward neural networks) is that the
trained parameters are shared between layers; the net-
work can also be "unfolded" to form a deep neural net-
work with t layers, as can be seen in Fig. 3 below. The
hidden state can be viewed similarly as that in the SSM,
storing necessary context from earlier in the input se-
quence although also being a bottleneck for how much
information from prior sequence elements can be used
in the next prediction.

Nevertheless, because the effective number of layers
increases linearly with respect to the input sequence
length, RNNs are especially susceptible to the vanish-
ing gradient and exploding gradient problems, where
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Figure 3: A simple recurrent neural network unfolded
across two time steps. [18]

gradients either vanish (to zero) or explode (to infinity)
as a result of repeated multiplication by small or large
numbers. More specifically, for t0 ≪ t, the input at time
t0 passes through neuron j in each of the t − t0 hidden
layers with the same weights before reaching the output
at time t, picking up a factor of (Whh)

t−t0
j j along the way.

Depending on the range and behavior of activation func-
tion selected and whether |(Whh) j j| is greater than or less
than 1, this can cause the resulting gradients obtained
in backpropagation (with respect to the input) to either
vanish or explode [18]. In particular, if the activation
function σ in the hidden layers is sigmoid, the vanishing
gradient problem becomes pertinent as σ′(x)≤ 1 for all
x.

Various methods have been developed to prevent the
vanishing gradient problem from stalling the training
process. One relatively simple method for addressing
the issue is to simply truncate backpropagation after a
certain number of time steps, leading to truncated back-
propagation through time (TBPTT). With a small "win-
dow," RNNs trained with TBPTT can avoid the vanish-
ing/exploding gradient problems at the cost of limiting
the size of the model’s context window [18].

Because this is often an unacceptable tradeoff (espe-
cially for many text-based applications), Hochreiter and
Schmidhuber [13] introduced long short-term memory
(LSTMs) in 1997, which are carefully designed to avoid
the vanishing gradient problem while maintaining the
ability to deal with long-distance dependencies.

One other major issue with recurrent neural networks
is they must be trained and evaluated sequentially due

to the nontrivial dependence of h(t) on h(t−1); this issue
is addressed through transformers, which use paralleliz-
able algorithms for matrix multiplication to speed up
execution.

3.3 Transformers

Unlike RNNs, transformers take advantage of self-
attention to handle a larger context window. The trans-
former model was introduced in [22] and has now be-
come ubiquitous with sequence-to-sequence modeling
and natural language processing. We omit a full ex-
planation of the transformer architecture, instead ex-
plaining the key improvements, and we point the reader
to [14, 22, 24] for a more detailed discussion.

The transformer architecture is built on the attention
layer, which allows for context accumulation between
any input and all prior inputs. In generative models, the
most common layer is the self-attention layer. In self-
attention, for an input sequence X ∈RL×d , self-attention
has learned matrices W k,W q,W v, and projects X to the
key, query, and value matrices defined as in Eq. 6 [24]:

Q = XW q ∈ RL×dk

K = XW k ∈ RL×dk

V = XW v ∈ RL×dv

(6)

The (scaled dot-product) attention operation is then
performed in Eq 7:

attn(Q,K,V ) = softmax(
QK⊺

√
dk

)V ∈ RL×dv (7)

Alternatively, to incorporate information from another
sequence, Q may the projection of a different sequence,
such as in a translation task.

Note that, for the matrix P= attn(Q,K,V ), with query,
key, and value vectors qi, k j, v j (row vectors in the query,
key, and value matrices) [24]:

Pi = ∑
1≤ j≤L

softmax(
qik

⊺
j√

dk
)v j (8)

This can intuitively be viewed as for sequence input
i, it is compared to each other input j and has scalar

score softmax(
qik

⊺
j√

dk
). This scalar score corresponds to

how much input i "attends" to input j, or informally how
important input j is to characterizing or contextualizing
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Figure 4: Vanilla transformer architecture [22, 24]

input i. We then accumulate the value vectors weighted
by the attention score, to allow Pi to represent the ac-
cumulation of sequence information relevant to input
i [24].

In this manner, rather than requiring a hidden state to
store necessary context, the attention layer computes the
relevant context, absolving the hidden state bottleneck
but at the cost of computation scaling with O(L2) to pre-
dict a sequence of length L. Although modifications to
attention have been proposed, the fundamental quadratic
scaling in sequence length is prohibitively expensive for
many applications.

To create the transformer model, the attention layer
and a fully-connected layer are repeatedly layered. The
full transformer architecture for a translation task is
shown in Fig. 4.

The core advantages of the transformer model are
easy parallelization of training and the removal of a state
bottleneck, as context is recomputed for each input. How-
ever, this context computation is expensive, and State
Space Models represent a return to stateful computation
to avoid the runtime cost.

4 Deep sequence models as SSMs

4.1 RNN

Informed by the other sequence models in mind, RNNs
can be viewed as a special case of SSMs by observing
that both RNNs and SSMs attempt to approximate the
same continuous-time dynamics

x′(t) =−x(t)+ f (t,x(t)) (9)

in similar ways [6]. Using backwards Euler discretiza-
tion yields a state-dependent gated RNN, while applying
Picard iteration to obtain a description for an infinitely-
deep SSM [6].

In particular, Gu [6] shows through a direct applica-
tion of backwards Euler discretization that single-layer
discrete-time RNNs of the form

xk = (1−σ(zk))xk−1 +σ(zk) f (k,xk−1),

where f (k,x) is an arbitrary (discretized) function that
is Lipschitz continuous in x, is actually a discretization
of Eq. 9 with step sizes ∆k = exp(zk), xk ≈ x(tk) with
tk = ∑

k
i=1 ∆i. In some sense, then, the gating mechanism

present in many RNNs can be viewed as discretizing the
original dynamics of Eq. 9 with a time step ∆. [6]

Similarly, through the Picard-Lindelöf theorem, Gu
shows that continuous-time infinitely-deep SSMs with
oder N = 1 and A =−1,B = 1,C = 1,D = 0 also satisfy
the dynamics of Eq. 9; this result can be interpreted as
deeper layers approximating successive Picard iterates
of the solution to the continuous-time dynamics when
f is nonlinear. [6] By combining these two results, it
can be concluded that infinite-depth, linear RNNs of the
form

x(ℓ)k = (1−σ(zk))x
(ℓ)
k−1 +σ(zk)u

(ℓ)
k

u(ℓ)k = f (k,x(ℓ−1)
k )

(10)

also discretize the dynamics in Eq. 9. Nevertheless, since
these results rely on convergence as ℓ→ ∞, additional
work still needs to be done to understand the dynamics
in the non-asymptotic case (i.e., with finite depth or
width) [6].

4.2 CNN

As we discussed earlier, state space models can be
viewed as parameterizing sequence-length convolutions,
allowing CNN properties. Various works, such as Con-
vSSM [21], have alternatively parameterized the SSM
for differing convolutional filter properties.

As we study in Section 7.2, certain relaxations of the
State Space Model, such as the Spectral Transform Unit,
can be viewed equivalently as convolutional layers with
fixed sequence-length filters, as shown in Fig. 8.

4.3 Attention

As we discuss in Section 6.1, although state space mod-
els cannot replicate attention layers, they can replicate
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linear attention layers at a dramatically reduced cost [7].
Linear attention is defined as in Eq. 11:

attn(Q,K,V ) = (
QK⊺

√
dk

)V ∈ RL×L (11)

By removing the softmax non-linearity, linear atten-
tion can be computed in O(L) by leveraging precomput-
ing on K⊺V at the expense of reduced expressivity. De-
spite having an entirely different parameterization, [7]
shows that with suitable modifications, the SSM can
learn the (causal) linear attention layer.

5 Advanced State Space Models

5.1 Historical Detour: Legendre Memory
Units [23]

To address the vanishing gradient problem in LSTMs,
[23] propose a recurrent model structure where each
layer maintains both memory and a hidden state. To
store memory, a component of the Legendre Memory
Unit aims to orthogonalize the continuous input u(t)∈R
across a sliding window of length θ ∈ R>0 with the
ordinary differential equation:

θm′(t) = Am(t)+Bu(t)

With mt ∈ Rd referring to the memory, and A,B be-
ing fixed matrices derived from the Legendre polynomi-
als [23] . The derivation of A, B allows m(t) to store the
projection of the input sequence onto the Legendre poly-
nomials, allowing m(t) to approximate and efficiently
store the input signal. After discretization and in its full
representation, the Legendre Memory Unit approximates
the above ODE, and updates its hidden state and memory
with [23]:

ht = f (Wxxt +Whht−1 +Wmmt)

ut = eT
x xt + eT

h ht−1 + eT
mmt−1

mt = Āmt−1 + B̄ut

(12)

For learned kernels Wx,Wh,Wt , learned encoding vec-
tors ex,eh,em, and a chosen nonlinearity f . Predictions
can then be made based on the hidden state.

The LMU architecture vastly outperforms the LSTM
in effective memory. The LMU was the first recurrent
architecture capable of handling temporal dependencies
across 100,000 time-steps. Success in this realm moti-
vated the continued studying of state space dynamics,

Figure 5: A time-unrolled LMU layer. [23]

especially given that even fixed matrices A,B can lead
to drastic memory improvements.

Subsequent work was greatly informed by the Legen-
dre Memory Unit and further explored the orthogonal-
ization of the input sequence, disregarding the vestigial
LSTM components.

5.2 HiPPO: High-Order Polynomial Projec-
tion Operators [9]

Empirically, it appears that learning the SSM via gra-
dient descent methods performs poorly in practice
with random initialization of A. This is likely due to
the exponential propagation, either leading to vanish-
ing/exploding gradients. [10]

The A matrix is critical for maintaining memory, and
the HIPPO approach constructs matrices that allow the
hidden state to approximate the input series. Different
HiPPO matrices may represent more recent signals with
higher fidelity or represent with uniform fidelity. The
HIPPO framework was largely inspired by the LMU
memory unit [2].

Figure 6: The HiPPO Approximation [20]

More specifically, HiPPO specifies a class of matrices
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Figure 7: Decomposition of an input (red) in the Leg-
endre basis, with the black bars representing the coeffi-
cient. The HiPPO matrix updates these coefficients at
each step [20]

that allow the hidden state x(t) to approximate the input
history u(t) in the continuous SSM as coefficients on an
orthogonal basis, the most important matrix of which is
the HiPPO Matrix [20].

HiPPO Matrix: Ank =


√
(2n+1)(2k+1) if n > k

1
2(2n+1) if n = k
0 if n < k

(13)
Prior work has found that modifying an SSM from a

random matrix A to HiPPO improves performance on
the sequential MNIST classification benchmark from
60% to 98%. [20]. The HiPPO matrix maps the input
sequence to its coefficients in the Legendre Polynomial
basis, the set of orthogonal polynomials also used in the
LMU [20]. The HiPPO matrices perform similar in the
discrete case.

We can view an example of an input deconstructed
into the Legendre Polynomial basis in Figure 7.

5.3 S4: Structured State Space (Sequence)
Model [10]

Unfortunately, for the SSM in Eq. 2, to compute the
hidden state for state dimension h and sequence length
L requires O(h2L) compute and O(hL) memory, which
quickly becomes a computational bottleneck, requiring
significantly more operations than a comparable RNN
or CNN [10].

However, for diagonal A, we can easily express the
exponentiation of A as:

A=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =⇒ Ak =


λk

1 0 · · · 0
0 λk

2 · · · 0
...

...
. . .

...
0 0 · · · λk

n


And so computing K̄ can be done theoretically

in O((h + L) log2(h + L)) as a Vandermond prod-
uct, although in practice this computation is numer-
ically unstable. [10]. Note also that as (A,B,C) and
(V−1AV,V−1B,CV ) parameterize the same SSM, we can
learn any linear dynamical system with symmetric A
with an SSM restricting A to diagonal by the spectral
theorem [10].

However, despite the computational benefits of con-
sidering the class of SSMs with normal A, note that the
HiPPO matrix would then not fall under this category.
Motivated by the fact that the HiPPO matrix is the sum
of normal and low-rank matrix (NPLR), [10] considers
restricting A to be in this class as well. S4 [10] proposes
an algorithm that restricts the structure of A for more
efficient inference and training, with the restriction that
A is NPLR still capturing an empirically valuable class
of matrices. The key point is that if A is of an NPLR
representation, we can compute K̄ in Õ(h+L).

The authors interleave S4 layers with linear layers
and non-linear activations to form the Deep S4 Layer,
which substantially outperformed transformer based ap-
proaches in the Long Range Arena benchmark [10].
Note that despite the strong performance and conve-
nient parameterization, the S4 layer still suffers from the
underlying non-convexity in the SSM fitting problem,
as shown in the loss landscape in Fig. 12.

6 Princeton-Affiliated Work

6.1 Mamba [7]

Based on existing work done with state space models, in
2023 authors Tri Dao and Albert Gu introduced Mamba
as an example of a selective state space model, con-
structed as a combination of "prior SSM architectures
with the MLP block of Transformers" [7]. Dao and Gu
identify input-dependent data selection as a key short-
coming of existing SSM models and introduce a se-
lection mechanism by allowing the state space model
parameters ∆,B,C to depend on the input. Because this
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prevents efficient evaluation of SSMs (because this re-
lies on time and input invariance of the parameters),
the authors develop a "hardware-aware algorithm that
computes the model recurrently with a scan instead of
convolution". [7]

Both Mamba and its successor, Mamba-2, impose con-
straints on the form of the matrix A in order to improve
efficiency at the cost of decreasing model expressivity,
creating structured state space models. In particular,
Mamba-2 simplifies A by identifying At = cI for some
scalar c ∈R (rather than Mamba’s restriction of A to the
diagonal matrices as in S4), which provides significant
boosts to training efficiency [4], as described below.

Within their analysis, Dao and Gu introduce the idea
of state space duality (SSD) in order to connect the
notions of state space models and attention together
through N-semiseparable matrices, lower-triangular ma-
trices M satisfying

M ji =C⊺
j A j · · ·Ai+1Bi

for vectors B0, . . . ,BT−1,C0, . . . ,CT1 ∈ RN and square
matrices A0 . . . ,AT−1 ∈ RN×N [4].

In particular, when A is a constant multiple of the
identity matrix, the structured state space model spec-
ified by such a choice of A reduces to considering the
semiseparable matrix M defined by M ji = A j:i · (C⊺

j ,Bi),
which can be vectorized as M = L◦ (CB⊺) for

L =


1
a1 1

a2a1 a2 1
...

...
...

. . .
aT−1 · · ·a1 aT−1 · · ·a2 · · · aT−1 1


[4]. Evaluation then is equivalent to calculating

y = Mx = (L ◦CB⊺)x, which is equivalent in form to
causal linear attention Y = (L ◦QK⊺)V by associating
(L,C,B,X)→ (L,Q,K,V ). Since linear attention does
not have a softmax layer preventing us from precom-
puting K⊺V , as in the standard formulation of attention
found in transformers, constraining A = AtI for At ∈ R
means that we can reduce both the size and improve
the efficiency of the structured state space model, and
the L matrix corresponds to "input-dependent relative
positional encodings" that allows for Mamba’s "selectiv-
ity" [8]. Note that L also prevents query-key combina-
tions where the key is further along in the sequence than
the query, ensuring the "causal" nature.

6.2 Spectral Transform Unit [12]

Similar to S4, the Hazan Lab, led by Prof. Elad Hazan,
and Google Deepmind [1, 5, 12, 19] explored structured
state space models, restricting that the matrix A is di-
agonal. As before, as (A,B,C) and (V−1AV,V−1B,CV )
parameterize the same LDS (D = 0), we have that re-
stricting A diagonal still allows the state space model to
learn any LDS with symmetric A. [10]

Note that for diagonal A and assuming D = 0 as typ-
ical, we can continue from Eq. 4. Notating A as a di-
agonal matrix with diagonals λ1,λ2, . . . ,λK , B having
row vectors indexed b j, and C having column vectors
c j [12]:

yt =
t−1

∑
i=1

C̄AiB̄ut−i

=
t−1

∑
i=1

k

∑
j=1

c jλ
i
jb jut−i

=
t−1

∑
i=1

k

∑
j=1

c jb jλ
i
jut−i

=
k

∑
j=1

c jb j

t−1

∑
i=1

λ
i
jut−i

=
k

∑
j=1

c jb j

t−1

∑
i=1

µ(λ j)(i)ut−i

(14)

Where, note that b j is a row vector so c jb j is a matrix,
and where µ is the function with µ(α) = (1,α,α2, . . .).
We still have a dependence on the hidden dimension k
through the λ j, but [12] finds this to be removable.

Remarkably, for 0 ≤ α ≤ 1, there is a basis that can
represent any vector µ(α) with exponentially decay-
ing error in the amount of basis vectors [12]. Thus,
practically speaking, with 20 basis vectors φ1, . . . ,φ20,
we can represent any µ(α) (or linear combination of
µ(λi), . . . ,µ(λk)) with low error. Thus, there exists a ma-
trix M and coefficients βi, such that:

k

∑
j=1

c jb j

t−1

∑
i=1

µ(λ j) = M
20

∑
i=1

βiφi

Thus,

yt = M
20

∑
i=1

βiφi ∗u
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Figure 8: Viewpoint of the spectral parametrization as
learning coefficients on fixed filters [12]

Moreover, we can wrap the coefficients βi in the ma-
trix M, and so for some M, we have:

yt = M
20

∑
i=1

φi ∗u

This is an incredibly convenient parametrization of
the State Space Model and removes the extreme non-
convexity inherent in traditional approaches to fitting λi,
as λi is typically raised to high powers in the sequence,
whereas this approach bypasses learning λi by learning
a convention basis representation. Additionally, as the
size of M is not dependent on k, this approach can fit any
linear dynamical system with parameters independent
of the hidden dimension size.

The model unit detailed, and shown in Fig. 8, is known
as the Spectral Transform Unit. It is also worth noting
that the Spectral Transform Unit parametrizes a larger
class of function than just linear dynamical systems with
symmetric A, as the filters can recombine into terms not
expressive as combinations of µ(α).

Much of the power of this approach is through the
basis φ, also known as spectral filters, of the functions
µ(α), which transforms a highly non-convex learning
problem to fitting coefficients of a basis. Hazan et. al
[12] compute the filters as the top eigenvalues of the
matrix:

Z =
∫ 1

0
µ(α)⊗µ(α)dα

We can visualize the these filters in Fig. 9. Matrix Z,
as a Hankel Matrix, has exponential eigenvalue decay,
which allows for accurate low-rank approximation, en-
abling the use of a few basis elements to accurate model

the function class µ(α) [12].

Figure 9: The entries of some of the spectral filters. The
x-axis is the time domain [12]

Hazan et. al. combine the Spectral Transform Unit
(STU), with an autoregressive component to model the
system with:

yt = yt−2 +
3

∑
i=1

M′
iut+1−i +M

20

∑
i=1

φi ∗u

Additionally, to model negative eigenvalues, Hazen.
et. al [1] introduce additional filters that allow the repre-
sentation of µ(α) for α < 0.

6.3 Spectral Transformer [19]

The transformer model consists of nesting attention and
fully-connected layers. Hazan. et. al. leverage a simi-
lar architecture, interleaving STU and deep layers for
greater expressivity into the Stacked STU, as shown in
Fig. 10 [1].

Figure 10: Multi-layer Stacked STU Model [1]
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The Stacked STU has had remarkable performance
on the Long Range Area benchmark [1], greatly surpass-
ing transformer models and other State Space Models
on most benchmarks. Notably, no transformer model
has performed beyond random chance at the Path-X
image sequence benchmark, while the Stacked STU
achieves 93.24 accuracy (although underperforming
other SSM models). Additionally, the Spectral Trans-
form Unit has extremely stable training, being robust
to parameter changes unlike prior State Space Models
(such as S4) [1].

Subsequent work [19] from the Hazan Lab has dra-
matically scaled up the Stacked STU model and engaged
in more detailed analysis. Notably, experimentation has
confirmed that the loss landscape of the STU is fairly
smooth as hypothesized, as shown in Fig. 12.

The larger 2.6 billion parameter Flash STU model,1

which has an architecture comprising of STU layers
and (sliding window) attention, as shown in Fig. 11,
outperforms transformer models of the same scale on
language modeling tasks, with more stable training and
fewer loss spikes [19].

7 Remarks

With the introduction of the State Space Model, it seems
that the current transformer-dominant paradigm may be
poised to shift. Startups such as Cartesia2 are using state
space models as the basis for multi-modal intelligence,
and research such as Mamba and the STU [1, 7] show
that SSMs can substantially exceed transformer perfor-
mance on long range tasks when their expressivity is
carefully constrained. The Flash STU model has shown
that SSMs may be able to outperform the transformer
model on language and can also match the speed of high-
optimized transformer implementations [19]. Highly
structured SSMs (for example, when A takes on a scalar-
times-identity form) are expressible in terms of causal
linear attention, further showing how SSMs serve as a
generalization of the attention mechanism and the con-
volution.

While it is unclear so far whether state space mod-
els will maintain their advantage with larger and larger
model sizes, the existing work is promising. SSMs have

1Implementation available at
https://github.com/windsornguyen/flash-stu/

2https://www.cartesia.ai/

Figure 11: Flash STU architecture [19]

continued to shine at the largest scales they have been
trained at, match transformer speed without yet being
fully optimized, and the stability of training of mod-
els such Flash STU (2.6B) [19] is remarkable. We are
excited to have presented recent developments in state
space models and look forward to their continued suc-
cess.
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