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e O(L) time complexity



e O(L) time complexity

e But sequential



O(L) time complexity
But sequential

o Need s;_1 tocompute Yt
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O(L) time complexity
But sequential
o Need s;_1 tocompute Yt

Unstable (exploding/vanishing gradients)
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e People tried other variants



e People tried other variants

o LSTMs (long short-term memory)



e People tried other variants
o LSTMs (long short-term memory)

o Same idea, just more bells and whistles
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RNNSs are slower than a
Transformer in practice.
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Self-attention scales as O(L?)
In sequence length.
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Image source: Child et al. (2019)



Can we do better?



Can we do better?

Efficient and provable RNNs
for long contexts?
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Linear dynamical systems

= A —|—B’U,t
yr = Cri 4+ Duy



Learning optimal weights for
factors of A, B, C, D is hard

yPS — (CB + D)u; + CABus_1 + CA?Buy_s + CA’Buy_3 + . ..



Learning optimal weights for
relaxed parameterizations is easy

Y = VU + VU1 T VU2 ..



Intuition

Consider the one-dimensional case

yiPS = (CB + D)uy + CABuy_1 + CA*Buy_9 + CA>Buy_3 + .

y%DS — 1-ut+a-ut_1-I—az-ut_2+a3-ut_3-|—,,.
LDS __ 2 ok T
y, > =|1,a,a we, we—1,us—o .. .]

We are interested in vectors of the type ,u(a) = [1, a, a2, ce CLL] cRY for all a € [0, 1]




It's a Hankel matrix!

m—)  (a) 2 [1,a,0%,...a"]

Z = /0 pla) ® p(a) do
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Eigenvalues of Hankel
matrices decay
exponentially.
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Norm (log scale)
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Figure 1: The filters obtained by the eigenvectors of Z.
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Figure 4: Error obtained by an STU layer as a function of
the model parameter K. We observe an exponential drop in
the reconstruction loss as predicted by the analysis.

'Figures from the Spectral SSM paper (arXiv: 2312.06837)



Featurization.



o Set ®;...Px tobe the top-k eigenvectors of the system matrix Z
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e These filters are universal — they work for any sequence prediction task!



Set ®@; ... P tobe the top-k eigenvectors of the system matrix Z
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These filters are universal — they work for any sequence prediction task!

Convolutions using FFT run in O(L log L) time

o  Featurizing with k filters runs in O(k-L log L) time



Set ®@; ... P tobe the top-k eigenvectors of the system matrix Z

Featurization is the convolution of input sequence U7 ... UjJ, withfilters (I)1 .. (I)K
These filters are universal — they work for any sequence prediction task!

Convolutions using FFT run in O(L log L) time

o  Featurizing with k filters runs in O(k-L log L) time

Convolutions = GPU-friendly!
o  NOT sequential, unlike RNNs

o  ==>Asymptotic analysis is meaningful



Set ®@; ... P tobe the top-k eigenvectors of the system matrix Z

Featurization is the convolution of input sequence U7 ... UjJ, withfilters (I)1 .

These filters are universal — they work for any sequence prediction task!
Convolutions using FFT run in O(L log L) time

o  Featurizing with k filters runs in O(k-L log L) time

Convolutions = GPU-friendly!

o  NOT sequential, unlike RNNs

o ==>Asymptotic analysis is meaningful
Theoretical guarantees

o  Sublinear regret on the order of \/Z (near-optimal!)
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Models
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STU Block

"Figures from the Flash STU paper (arXiv: 2409.10489)






Flash STU Model Architecture

& N

- G
|

xN

-

- J

Figure 12: Flash STU Model Architecture, alternating between STU-T and (sliding window) attention’.

"Figures from the Flash STU paper (arXiv: 2409.10489)
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Tasks

LDS Robotics



Linear Dynamical Systems

LRU (Orvieto et al. 2023)
10°1 — LRU-LRO.1
—  SRU-LR 10.0 e Diagonal A (complex)
e Stable Exponential Param.
104 . .
i o A = exp(—exp(log(v))i+ 65)
2]
o e Ring Initialization
(o]
~ 10°4 © Ensure Au c [Tminarmax]
e y-normalization
102 o  Multiplier on B adapted to A
o  Prevents loss blowup at init
0 200 400 600 800
Samples

LRU required all interventions to train.

STU trained out of the box with zero init.




Online LDS
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Figure 2: Mean squared error ||§:+1 — ys+1||® of the differ-
ent layers on a single sequence from an LDS.



Robotics

e Zero hyperparameter tuning needed for filters

e Stable training out-of-the-box

Figure 3: Local loss landscape of the Figure 4: Local loss landscape of the S4 Figure 5: Local loss landscape of the
STU layer. layer. attention layer.

e Friendly “loss landscape” to optimize

e Theoretical guarantees on performance



Loss

Validation Losses on MuJoCo Ant-v1 Task (0.5M)

— STU
—— Transformer
Mamba-2
Model Validation Loss
STU 0.0092
Transformer 0.0237
Mamba-2 0.0139
260 460 660 860 1 OIOO 1 2I00 1 4I00 1 6'00

Time Steps



Loss

Validation Losses on MuJoCo Walker2D-v1 Task (0.5M)

—— STU
—— Transformer
Mamba-2
Model Validation Loss
STU 0.0062
Transformer 0.0134
Mamba-2 0.0066
6 260 460 600 860 1060 12b0 14b0

Time Steps



Cross Entropy Loss

Flash STU (2.6B) vs. Transformer (2.6B)

—— Transformer
—— Flash STU (Finetuned Filters)

0.0 2.0 4.0 6.0 8.0 10.0
Tokens Processed (billions)



Cross Entropy Loss

LM on FineWeb-Edu 100BT

—— Flash STU (learnable)
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Transformers RNNs / SSMs STU

O(L?) complexity O(L) complexity O(L log L) complexity
Powerful but slow Fast but unstable Fast AND stable

Memory hungry Training tricks needed Simple to train
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Abstract

This paper studies sequence modeling for prediction tasks with long range depen-
dencies. We propose a new formulation for state space models (SSMs) based on
learning linear dynamical systems with the spectral filtering algorithm [HSZ17].
This gives rise to a novel sequence prediction architecture we call a spectral state
space model.
Spectral state space models have two primary advantages. First, they have provable
robuslness propemes as their perfon'nance depends on neither the spectrum of the
dyn: nor the ity of the problem. Second, these models
are constructed with fixed convolutional filters that do not require learning while
still outperforming SSMs in both theory and practice.
The resulting models are evaluated on synthetic dynamical systems and long-range
prediction tasks of various modalities. These evaluations support the theoretical
benefits of spectral filtering for tasks requiring very long range memory.

1 Introduction

Handling long. i remains a core problem in sequence predic-
tion/modelling. Recurrent Neural Networks (RNN) [Hop82, RHW*85, EIm90] are a natural
choice, but are notoriously hard to train; they often suffer from vanishing and exploding gradi-
ents [BSF94, PMB13] and despite techniques to mitigate the issue [HS97, CVMG*M ASB16], they
are also hard to scale given the i nature of their

In recent years, transformer models [VSP*17] have become the staple of sequence modelling,
achieving remarkable success across multiple domains [BMR 20, DBK 20, JEP*21]. Transformer
models are naturally para].lellzable and hence scale significantly beuer than RNNs. However, attention
layers have memor that scale quads lly with context length. Many
approximations have been proposed (see [TDBM22] for a recent survey).

RNNs have seen a recent resurgence in the form of state space models (SSM) which have shown

long across varied ities [GGR21, DFS*22, GGB22, 0SG+23,
PMN*23 GD23]. SSMs use linear dynamlcal systems (LDS) to model the sequenoe to sequence
transform by evolving the internal state of a d ical system ding to the d ics equations

= Az + By Yyt = Cxy + Duy.




arXiv:2312.06837v4 [cs.LG] 11 Jul 2024

arXiv:2409.10489v3 [cs.LG] 23 Sep 2024

Flash STU: Fast Spectral Transform Units
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Abstract

This paper describes an efficient, open source PyTorch implementation’ of the Spectral Transform Unit [1] (STU). We
investigate sequence prediction tasks over several modalities including language, robotics, and simulated dynamical
systems. We find that for the same parameter count, the STU and its variants outperform the Transformer as well as
other leading state space models.

1 Introduction

The Spectral Transform Unit (STU) was recently proposed in [1] based on the spectral filtering technique of [15].
This neural network architectural unit is motivated by state space models for linear dynamical systems. The key
innovation of spectral state space models lies in their use of fixed convolutional filters which do not require learning.
This structure offers significant robustness in theory as the performance of the model is not influenced by the spectrum
of the underlying dynamics nor the dimensionality of the problem, making it suitable for tasks that require long-term
memory.

In this paper we describe an open source PyTorch implementation of the STU and experiments as well as abla-
tion studies to understand its properties. We study several sequence prediction problems across various modalities,
including synthetic time series generated from linear dynamical systems, robotics control sequences, and natural
language sequences.

1.1 Description of the Spectral Transform Unit

In the STU architecture, the schematic of which is given in Figure 1, the output is generated as a transformation of the
input sequence that involves (optional) lifting of the input di ion by a learned ion to a higher di i
convolution with a set of fixed filters (i.e. spectral filtering), projection with a set of learned parameters, and (optional)
learned nonlinearities. We can thus write

k
Q=0 (Z M; - (szut:z—L>) s

i=1

where M; are fixed projections, o is a nonlinearity, and ® ., are k fixed filters that can be computed a-priori, and for
simplicity we don’t explicitly write the lifting in the mathematical expression. The filters @, ., are the eigenvectors

*Equal contribution. Order determined alphabetically by last name.
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PROVABLE LENGTH GENERALIZATION IN SEQUENCE
PREDICTION VIA SPECTRAL FILTERING

Annie Marsden * Evan Dogariu Naman Agarwal Xinyi Chen
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November 5, 2024
ABSTRACT
‘We consider the problem of length ization in seq iction. We define a new metric of
performance in this setting — the Asy ic-Regret— which regret against a benchmark

predictor with longer context length than available to the learner. We continue by studying this
concept through the lens of the spectral filtering algorithm. We present a gradient-based learning
algorithm that provably achieves length generalization for linear dynamical systems. We conclude
with proof-of-concept experiments which are consistent with our theory.

1 Introduction

isa problem in machine learning with widespread applications in natural language
processmg, time-series forecasting, and control systems. In this setting, a learner observes a sequence of tokens and
iteratively predicts the next token, suffering a loss that the between the predicted and the true
token. Predicting future elements of a sequence based on historical data is crucial for tasks Ianging from language
modeling to autonomous control.

A key challenge in sequence predwtlon is undemtandlng the role of context length—the number of previous tokens

used to make the up p p that perform well with limited context due to compu-
tational and memory ints. These resource ints become particularly signi during the trammg phase
of a predictor, where the computational cost of using long can be prohibitive. C it is beneficial

to design predictors that can learn from a smaller context length while still generallzmg well to longer sequences.
This leads us to the central question of our investigation: Can we develop algorithms that learn effectively using short
contexts but perform comparably to models that use longer contexts?

To address this question, we introduce a new performance metric—A ic-Regret—which the differ-
ence in total prediction loss between an online predictor with limited context length and a benchmark predictor with
a longer context. Unlike classical regret, which assumes both the learner and the benchmark operate under the same
conditions, Asymmetric-Regret accounts for the asymmetry in context lengths, providing a more realistic assessment
of performance in resource-constrained settings. With a formal and well-defined notion of Asymmetric-Regret in
hand, we begin our investigation with the following question: are there algorithms that can attain non-trivial bounds
on the Asymmetric-Regret for natural sequences?

‘We explore this concept through the lens of spectral filtering algorithms (Hazan et al., 2017b, 2018). Spectral filtering
has emerged as a robust method for learning linear dynamical systems when the system is unknown and the hidden state
is unobserved. Beyond their theoretically sound properties, spectral filtering-based predictors have proven practical




Length Generalization

How to appropriately define length generalization?
New definition: Asymmetric Regret

/ New Result: \

e  Spectral Transformers can achieve vanishing asymmetric regret
despite observing a small fraction of the context

e Novel Tensored formulation for Spectral Transformers

o arbitrary length extrapolation / length generalization




Asymmetric Regret

How to define length generalization?
The asymmetric-regret:

AA L
S e — 925
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Prediction algorithm uses
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Tensored spectral filters

Tensor decomposition property of the Vandermonde vectors:

2 2 2
e = L,0,...,a") pa =ps @ py

= Improper relaxation {M } C {lj,a ® MIB

= New Tensored filtering algorithm!

{9/ ® ¢, 4,7 € [K]}



NEW: provable length generalization!

Theorem: lety,,...y; be generated from marginally stable LDS, then STU algorithm guarantees:

S e — 357 YD — mingeps, |u — 97 = O(/T)

= length generalization from root(T) to T'!

Copy w/ Tensors
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Fast Inference

Generating 1 token:

e  Transformers - O(prompt length + generation length) - memory & compute

e  RNNs/SSMs - O(1) - memory & compute NN\ NN\UN\UNNUNNN
e  Convolutional Models -
o Naively same as attention AN NANANNANANN
,\/\N\/\/\/

New Result: O(log?L ) - compute




FutureFill

The future contribution of the current token can be computed now

o Not possible for attention

B88ees )0

N NANANANANNN

iV Vel Ve VA VY

N NANANANANANN

FutureFill
Output



FutureFill

FFT —

- Seeses00

The future contribution of the current token can be computed now

o Not possible for attention

ANNANANANANN
ANNANANANANN

||
Cache Size K

[ Use FFT to compute FutureFill in time L log(L) ]

od | | |

* FutureFillcost-0(L logL)
« Compute k" token - 0(k)
* Overall:

K i+Llogl K?+LloglL
Zi=1 - sl _ - g ~ 0(J/TogD)



Recursive FuturefFill

Idea can be applied recursively to achieve O(log? L) compute

NNANN

Compute Recursively

concat.

\NNNVUNINNAN

NNANN

+

SNZNSNNT NN
e

Compute Recursively

Future Fill via FFT




Time (s)
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Fast Inference

Generating 1 token:
e Transformers - O(prompt length + generation length) - memory & compute
e RNNs/SSMs - O(1) - memory & compute
e Flash STU - O(k log L) = O(log® L) - compute

e Ongoing: Flash Distilled STU - O(1) - compute

e After training a Flash STU (Language) model, we
distill the STU layers into LDS layers

o  O(1) token generation
o  Allows for (very) fast language models

(& )




Distilling STU layers into LDS layers

Flash STU Model Architecture
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Figure 12: Flash STU Model Architecture, alternating between STU-T and (sliding window) attention'.
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But isn't learning the LDS layers hard?

Learning optimal weights for
factors of A, B, C, D is hard

B aY, N-rNNn\/av )
(NON-convex)

y;?% = (CB + D)u; + CABu;_1 + CA’Bu;_5 + CA’Buy 3 + ...

Learning optimal weights for
relaxed parameterizations is easy

2
/ \
(CO ["(\ \/QY )
I\ A [[ VA /

A

Y = Moug + Miug—31 + MoUug—2 + ...




Realizations

In practice, fitting an LDS becomes feasible when we learn the signal from an STU.
We hypothesize the STU denoises the signal and, because it

represents similar functions as an LDS, changes the signal to
something an LDS can learn. (Ongoing)

However, this is a slight oversimplification — despite trained STUs being learnable by an
LDS, a randomly initialized STU cannot be learned by an LDS.

What makes the STUs trained from data “special”? (Ongoing)



Recap

o STU, a new deep neural network architecture!

o Subquadratic time complexity

o Can provably learn symmetric marginally stable LDS
m Can still learn more difficult settings in practice

o FutureFill - subquadratic inference speed, memory

o  Provable length generalization (new!)

o STU to LDS Distillation - O(1) Language Models

o Robust to hyperparameter changes, “just works”

o Can scale up all the way to LLM size
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