
Wave Filtering for General Linear Dynamical Systems

Devan Shah
devan.shah@princeton.edu

Brandon Cho
brandon.cho@princeton.edu

December 12, 2024

Abstract. Within the past few years, state space models (SSMs) have become
a valuable tool for sequence-modeling tasks, featuring prominently in both academic
work and in industry applications [3; 4; 5; 7; 9; 11]. Notably, the Spectral Transform
Unit (STU) proposed by Hazan et al. [9] relaxes state-space architecture through the
introduction of spectral filters. The STU has achieved strong results and theoretical
guarantees modeling symmetric linear dynamical systems and serves as a component in
efficient post-transformer architectures for language. However, frequently linear dynamical
systems in nature are not symmetric, and a large body of work (such as HiPPO [6]) has
shown that systems capable of modeling non-symmetric linear dynamical systems are
significantly more expressive. To that end, we propose alternate filter constructions to
extend the STU to model general linear dynamical systems whose hidden-state transition
matrices may not necessarily be symmetric.1

1 Introduction

1.1 Linear SSMs
Drawing inspiration from concepts in control theory, SSMs have positioned themselves
as a contender to succeed transformers as the state-of-the-art approach for dealing with
time-series data [5; 10; 11]. In ongoing research by the Hazan Lab, even the Linear SSM
or slight relaxations of the Linear SSM, such as the STU, are incredibly expressive and
work well within language models [1; 9; 11]. The Linear SSM is defined by the recurrence
equations

xt = Axt−1 +But

yt = Cxt +Dut
(1)

which specify a discrete-time linear dynamical system (LDS) f : ut 7→ yt, where xt
encodes the hidden state of the model and A,B,C,D specify the LDS [8]. Since the

1Code for our experimentation is available here: https://github.com/dshah02/Filters_For_
General_LDS or in an interactive Google Colab environment here: https://colab.research.google.
com/drive/1mczJsXZBACE2KN_K-h4ItftPVU4ye-aS. We are incredibly thankful to Windsor Nguyen and
the Hazan Lab for sharing a Jupyter notebook STU instantiation and training script, which served as the
template for our code. We provide a simplified STU implementation in our notebook and a similar full
implementation is available at https://github.com/windsornguyen/spectral_ssm.

1

https://github.com/dshah02/Filters_For_General_LDS
https://github.com/dshah02/Filters_For_General_LDS
https://colab.research.google.com/drive/1mczJsXZBACE2KN_K-h4ItftPVU4ye-aS
https://colab.research.google.com/drive/1mczJsXZBACE2KN_K-h4ItftPVU4ye-aS
https://github.com/windsornguyen/spectral_ssm

matrix D parametrizes a skip connection from ut directly to yt (bypassing the hidden
state xt) that can be learned through the other parameters A,B,C, much of the literature
(including this paper) sets D = 0. As many systems in nature can be modeled as an LDS
with suitably chosen parameters, much work has been done to find methods to extrapolate
the matrices A,B,C given samples of time-sequence data obtained from natural systems
[10]. We typically view xt as the hidden state of the system, storing the information from
prior inputs important for the future state of the system. When learning matrices A,B,C
to fit a system, we need to fix a size of the hidden dimension and this often serves as a
bottleneck on the representation capacity.

Note that, to better understand the dynamics of the Linear SSM, we can unroll the
recurrence dynamics. With ∗ representing the convolution operator, note that:

yt = Cxt +Dut = C(Axt−1 +But) +Dut

= Dut +
t−1∑
i=1

CAiBut−i

= ⟨D + CB,CAB,CA2B, . . . ⟩ ∗ u
= K ∗ u

(2)

Often times, when learning parameters to model a system with a Linear SSM, we
achieves suitable performance with constrained structure on A. For instance, the S4 model
architecture requires that A is a Normal Plus Low Rank (NPLR) matrix, which allows for
easier parametrization and a faster learning process [7; 8; 12].

In particular, when A is known to be diagonal, which encompasses the case where A
is symmetric since B,C can absorb orthonormal transformations, we have that:

A =


λ1 0 · · · 0
0 λ2 · · · 0
...
0 0 · · · λd

 =⇒ Ak =


λk1 0 · · · 0
0 λk2 · · · 0
...
0 0 · · · λkd


And thus, if we assume D = 0, and index the row vectors of B by bj and the column

vectors of C by cj, Equation 2 can be extended as:

yt =
t−1∑
i=1

C̄AiB̄ut−i =
t−1∑
i=1

k∑
j=1

cjλ
i
jbjut−i

=
t−1∑
i=1

k∑
j=1

cjbjλ
i
jut−i =

k∑
j=1

cjbj
t−1∑
i=1

λijut−i

=
k∑
j=1

cjbj
t−1∑
i=1

µ(λj)(i)ut−i,

(3)

With µ(α) being the exponential function with base α, i.e. µ(α)(i) = αi. As i is
integral, we also express µ(α) as the vector (1, α, α2, · · ·) with i then referring to the
index.

1.2 The Spectral Transform Unit
In the seminal paper [9], Hazan. et. al. find a sequence of vectors Φ = (ϕ1, ϕ2, . . .),
which they call wave filters or spectral filters, so that that, with the first k filters and

2

Figure 1: The entries of some of the wave filters. The x-axis is the time domain [9]
.

for all α ∈ [0, 1], µ(α) can be represented as a linear combination of ϕ1, . . . , ϕk with
error bounded by Ce−k, with C independent of k or α. Thus, with the first 20 filters,
ϕ1, . . . , ϕ20, any vector µ(α) can be represented with minimal error. This includes cases
where α ≈ 1, which are long memory systems that are typically more challenging to learn.
More specifically, by Lemma 4.1 in [9], where T denotes the length of the input sequences:

Lemma 1 Choose any α ∈ [0, 1]. Let µ̃(α) be the projection of µ(α) onto the k-
dimensional subspace of RT spanned by {ϕj}kj=1. Then, with absolute constant c0 > 3.4,

∥µ(α)− µ̃(α)∥2 ≤ O
(
c

−k/ log T
0

√
log T

)
.

The wave filters {ϕj}kj=1 are chosen as the top k eigenvectors of the Hankel matrix
Z =

∫ 1
0 µ(α)⊗ µ(α) ∈ RT×T with entries

Zij = 2
(i+ j)3 − (i+ j) .

Thus, with M (j) = ∑d
l=1⟨ϕj, µ(αl)⟩(cjbj), block matrix MΘ = [M (1), . . . ,M (k)], and

matrix X with Xij = ∑T−1
q=1 ϕj(q)ut−q(i), representing convolutions between the input

dimensions and the filters:

y ≈MΘX (4)
We can visualize the filters in Figure 1.
The larger intuition is that, by the final line of Equation 3, since µ(λj) is well represented

by Φ, we can represent the convolution ∑t−1
i=1 µ(λj)(i)ut−i as a weighted sum of convolutions

between the wave filters and the inputs. These can be pre-computed, and multiplied
by a suitable matrix to approximate the system. More loosely, representing ϕi ∗ u as a
coordinate wise convolution, we can equivalently express Equation 4 by y = P

∑k
i=1 ϕi ∗ u

for some P . Thus, to learn a linear dynamical system, rather than learning the matrices
A,B,C, we can learn a strong approximation by simply learning the matrix M . In
practice, with initial data drawn from a symmetric LDS, gradient descent on the matrix
M will fit the system quickly and accurately, with loss typically dropping below 10−4 for
stable systems.

In the initial implementation [9], Hazan et. al. additionally add scaling terms to each
filter, but this is largely a design choice for stability. For vector ϕi, the scaling term σ

1/4
i

3

Figure 2: Viewpoint of the spectral parametrization as learning coefficients on the fixed
filters [9]

is used where σi is the corresponding eigenvalue of Z for the eigenvector ϕi. In some
implementations of the STU, there additionally is an auto-regressive matrix component
and additional skip-connections, but later implementations have had these as optional
parameters and we omit them for simplicity [1; 9]. As is commonly done, we omit the
norm limitation of M included in [9].

Thus, we present the following gradient descent-based algorithm to learn the matrix
M for the STU [9]. It is not important to work through each detail – the key observation
is that as the symmetric LDS convolutional kernel approximately lies in low-dimensional
space, and as we have found vectors that serves as "basis" for this space, we have a different
technique for learning symmetric linear dynamical systems.

Algorithm 1 Wave-filtering algorithm for LDS sequence prediction
Require: filter parameter k, learning rate η, dataset D = (u(i), y(i))mi=1 with u(i) and y(i)

being input and output sequences, input dimension n, output dimension r
1: Compute {(σj, ϕj)}kj=1, the top k eigenpairs of ZT .
2: Initialize M1 ∈ Rr×nk,
3: for t = 1, . . . ,m do
4: Initialize L = 0
5: for ℓ = 1, . . . , L do ###predict output at time ℓ given prior inputs
6: Compute Xt ∈ Rnk, with entries X(i,j) := σ

1/4
j

∑ℓ−1
q=1 ϕj(q)u

(t)
ℓ−q(i).

7: Predict ŷℓ = MtXt
8: L = L+ ∥y(t)

ℓ − ŷℓ∥2

9: end for
10: Gradient update: Mt+1 ←Mt − η∇MtL
11: end for

We note that this is different from the online algorithm algorithm presented in [9] but
in line with more recent implementations [1; 11].

4

1.3 Limitations of the STU
Although the Spectral Transform Unit performs well at learning symmetric linear dynami-
cal systems, by its design, it is limited when learning non-symmetric linear dynamical
systems. Unfortunately, many tasks are much easier to learn given a model with the
capacity to learn a broader class of linear dynamical systems.

More specifically, the base STU model is effective at modeling linear dynamical systems
with diagonal A, since the Hankel matrix-derived {ϕj}kj=1 are able to approximate µ(α)
with error exponential in k. However, when A is not diagonal we no longer have the
same theoretical guarantees as in Lemma 1, and there may be alternative sets of filters
that outperform the Hankel matrix eigenvectors in this more general setting. As far as
intuition on why that may be the case and what concerns arise, for non-symmetric matrix
A, first note that Ai for large i will likely be dominated by a few large eigenvalues and
thus act similar as a symmetric matrix. Thus, we expect the STU to correctly model the
distant input contributions for this LDS. However, we expect the recent contributions to
follow more complex patterns that will not be modelable by Φ. As an example, Figure 3
showcases the kernel K of the following randomly generated LDS with eigenvalues 0.99
and −0.67:

A =
[
0.1140 1.1414
0.6024 0.2052

]
, B =

[
0.3968
0.1338

]
, C =

[
0.3993 0.2379

]

Figure 3: Kernel K of the specified LDS. Note how, long-term dynamics are dominated
by the larger eigenvalue and are exponential, yet short term dynamics may be more
complicated.

To address a similar issue, Gu et al. in [6] introduced high-order polynomial projection
operators (HiPPO matrices) that allow the hidden state xt to parametrize the inputs
ut in the set of Legendre polynomials, which form an orthonormal basis for the Hilbert
space L2([−1, 1]) and can uniformly approximate any continuous function on [−1, 1] by
the Weierstrass approximation theorem. These HiPPO matrices allow for the SSM to
begin to overcome the memory horizon issues faced by traditional RNNs.

We anticipate that with certain learned filters, we can extend the Spectral Transform
Unit to model a more complicated set of dynamics, such as linear dynamical systems
governed by a non-symmetric matrix A. We hope that, based on the success of the HiPPO
matrices, which are symmetric plus low rank, even a slightly more expressive set of filters
can lead to large improvements.

5

2 Methodology

2.1 Overview
The Spectral Transform Unit can effectively represent symmetric linear dynamical systems,
since under a linear transformation, the kernel of the linear dynamical system can be
well represented by the spectral filters Φ. Thus, to extend the STU to better model non-
symmetric linear dynamical systems, we will attempt to find filters that can well represent
the kernels of non-symmetric linear dynamical systems. To do so, we will generate many
non-symmetric linear dynamical systems and attempt to find filters useful in fitting all of
them simultaneously, with the goal that our filters generalize to the distribution we are
sampling from. We test out many methods of parameterizing the filters and test their
performance against the spectral filters.

2.2 Experimentation
In order to extend the STU, we take the wave filters {ϕj}kj=1 specified by Hazan et al.,
which we call fixed filters or spectral filters, and append to them a set of adaptive filters
{ψi}mi=1 that are learned through gradient descent. At times, we also refer to the adaptive
filters as learned filters. Our training methodology is designed so that the adaptive filters,
serving as a basis, minimize the expected representation error of the kernels of linear
dynamical systems drawn from a certain distribution, which is described below. Let dh
denote the dimension of the hidden state, du denote the dimension of the input, do denote
the dimension of the output, and T denote the input sequence length.

In order to learn the filters {ψi}mi=1, we select some small δ > 0 and randomly generate
L = 50, 000 linear dynamical systems {(Aα, Bα, Cα)}Lα=1 by first sampling the entries of a
dh×dh random matrix A′

α,ij ∼ N (0, 1) and the coefficients Xα ∼ Unif(0, 1) independently
for each α, i, j and then defining

Aα,ij = Xα
1− δ

λmax(A′
α)A

′
α,ij

Bα,ij ∼ Unif(0, 1)
Cα,ij ∼ Unif(0, 1)

(5)

for appropriate ranges of i, j specified by the dimensions of Aα ∈ Rdh×dh , Bα ∈ Rdh×du , and
Cα ∈ Rdo×dh . This process directly bounds the maximum eigenvalue of Aα by Xα(1− δ).
Other distributions that sample the entire desirable space of systems should also suffice.

We will have a learned parameter Mα for each task α ∈ {1, . . . , 50000} and all of the
tasks will share the same set of adaptive filters, which will also be updated by gradient
descent. To minimize error when learning the linear dynamical systems, the adaptive filters
will need to parameterize a basis that minimizes the kernel representation error across
the 50, 000 linear dynamical systems. As the adaptive filters are represented with few
parameters (i.e. as sinusoids and by the mechanisms below) and we train with relatively
few epochs, we expect that they will not overfit to the 50, 000 training systems, but
will instead minimize the expected kernel representation error for an LDS chosen by our
sampling procedure. As these LDSs have complex behavior and have non-symmetric A,
we thus expect the adaptive filters to model this behavior.

6

To better understand how initialization and parametrization of our adaptive filters
affects the performance of our modified STU, we parameterize and initialize {ψ(0)

i }mi=1
using one of the following procedures:

1. Sinusoidal initialization, where each ψ
(0)
i (t) = βi sin

(
2πωit
T

+ Xi

T

)
exp

(
−2γit

T

)
for

Xi, βi, γi, ωi ∼ N (0, 1) i.i.d. is the product of a randomly modified sine curve and
an exponential decay term,

2. Triple sinusoidal initialization, where each ψ(0)
i (t) is the product of three sine curves

initialized as in (1) with an exponential decay term exp
(
−2γit

T

)
, and

3. Neural network parametrization, where each ψ
(0)
i (t) is a neural network with input

dimension N0 = 1, depth D with varying hidden layer sizes, and output dimension
ND = 1. We additionally added a learned decay parameter as with the other
initialization methods.

Figure 4: Sampled initializations for all three methods. Filters 0 through 3 are sinusoidal,
filters 21 through 23 are triple sinusoidal, and filters 41 through 43 are neural network
parametrized.

These initialization options were chosen for their wave-like shapes and their relative
expressivity for continuous functions on [0, T]. Notably, each parametrization has signifi-
cantly fewer than 50,000 parameters per filter2 and thus we do not expect the filters to
overfit to the training set.

We also attempted to use Gaussian initialization, where µi, vi, Ci ∼ N (0, 1) i.i.d.
parameterize a Gaussian distribution ψ(0)

i (t) = Ci exp
(
−(t

T
− µi)2/(2|vi|)

)
, and polynomial

initialization, where each ψ
(0)
i (t) = ∑7

j=0 Xi,j(tT)j is a degree seven polynomial with i.i.d.
random coefficients Xi,j ∼ N (0, 1), but found that neither method was able to sufficiently
represent the randomly generated LDSs. We would also like to remark that, although it
may seem that the bases are excessive (i.e., only 8 terms are sufficient to represent degree
7 polynomials, yet we have more than 8 filters), even linearly dependent basis vectors can

2All methods tested except the neural network have fewer than 10 parameters per filter.

7

be useful by more densely sampling the filter space, as gradient descent is an imperfect
optimizer.

After initialization, we run the following minibatch gradient descent algorithm to
optimize both {ψ(τ)

i }mi=1 (where τ denotes iterations) and the matrices M (τ)
α associated

with each task:

Algorithm 2 Gradient descent for {ψ(τ)
i }mi=1 and Mα

Require: learning rate η, number of iterations ν, batch size B
1: for τ = 1, . . . , ν do
2: Sample a batch {(Aβ, Bβ, Cβ)}Bβ=1 of size B from the tasks {(Aα, Bα, Cα)}Lα=1
3: Sample a random input uβ ∈ RB×T×du with entries i.i.d. standard Gaussian
N (0, 1)

4: Generate trajectories yβ(t) for each LDS with initial state uβ
5: Generate predictions ŷβ(t) using the learned M

(τ)
β and filters {ϕj} ∪ {ψ(τ)

i } (alter-
natively, just use the adaptive filters {ψ(τ)

i })
6: Compute MSE loss L = 1

2B
∑B
β=1 ∥yβ − ŷβ∥

2

7: Gradient update M (τ+1)
β ←M

(τ)
β − η∇Mβ

L and ψ
(τ+1)
i ← ψ

(τ)
i − η∇ψi

L
8: end for

We also attempted to use two separate learning rates for the matrices Mα and the
filters {ψi}, but ran into stability issues with gradient descent. We performed our training
primarily on an NVIDIA A100 GPU with 40GB of GPU memory allocated, with some
training also conducted via Princeton University’s Della cluster.

We hypothesize that our model performs better on shorter sequences than the STU,
since we expect short term dynamics to not follow exponential patterns for the reasons
described in the limitations section.

3 Results and Discussion

3.1 Combined Fixed and Adaptive Filters
We first evaluate the win rate and mean error of the combined set of fixed and adaptive
filters against just the fixed filters found in the base STU model in the setting du = 1,
dh = 2, do = 1 and the same LDS generation procedure as above. Using 60 adaptive filters
and 60 fixed filters (mean error 0.101) achieves a 48% win rate against using 120 fixed
filters as in the base STU (mean error 0.092). Using 30 adaptive filters and 30 fixed filters
(mean error 0.107) achieves a 65% win rate against using 60 fixed filters as in the base
STU (mean error 0.112).

3.2 Comparison with STU Performance
We also evaluate our methodology with that of the base STU by comparing the MSE of
the STU with fixed filters {ϕj}mj=1 with the MSE of the STU leveraging our adaptive filters
{ψj}mj=1 and no fixed filters. To make this comparison, we chose N = 20 randomly-sampled
linear dynamical systems and trained the models with ν = 1, 000 epochs of training on
Gaussian inputs with length T (with no batches). To evaluate performance, we sample
additional random input sequences of length T after training, and compare the MSE of

8

the base STU (with fixed filters) and our adaptive filters with respect to the outputs
y1, . . . , yT generated by the original N LDSs to derive win rate statistics.

First, for input lengths T = 16, 32 we evaluate with m = 15 filters, and for T =
64, 128, 256, 512 we evaluate with m = 60 filters (split equally among each of the three
initialization methods), both with diagonal A and dimensions du = 1, dh = 2, do = 1.
This yields the win rate table in Figure 5 below.

T adaptive filter win rate
16 0.45 (9/20)
32 0.45 (9/20)
64 0.30 (6/20)
128 0.30 (6/20)
256 0.30 (6/20)
512 0.20 (4/20)

Figure 5: Win rates for adaptive filter method over base STU with diagonal LDSs.

These results are expected, since the STU filters were constructed to achieve loss
decreasing exponentially with the number of filters, while the primary aim of our method-
ology was to generate filters that perform better on non-symmetric linear dynamical
systems. It is interesting to note that that the win-rate decreases with the sequence length.
We expect that this is due to challenges when training filters as the filters need to learn to
set later terms to 0 to minimize loss (as far away terms have no impact in long sequences),
but the functions that parameterize our filters may struggle to go to zero or the pressure
towards zero may destabilize the filters.

We then repeated these experiments for general (non-symmetric) linear dynamical
systems, with T = 128, 256, m = 60 filters (also split evenly among each initialization
method), and N = 20. This yields the win rates in Figure 6.

These results indicate that our learned filters do not outperform the spectral filters
directly on non-symmetric linear dynamical systems; further discussion on this can be
found in the next section. A subsample of the m adaptive filters for the T = 256 model can
be seen in Figure 7, and an example of our adaptive filters fitting one of the non-symmetric
linear dynamical systems can be seen in Figure 8.

T adaptive filter win rate
128 0.25 (5/20)
256 0.30 (6/20)

Figure 6: Win rates for adaptive filter method over base STU with general LDSs. Unfor-
tunately, due to a system error on the machine, we were unable to test the other lengths.

3.3 Discussion
Our results are largely inconclusive. Although our learned filters alone underperform
compared to the spectral filters on symmetric and non-symmetric systems, using both
spectral filters and learned filters outperforms using more spectral filters in some cases.

With proper parametrization and initialization of the learned filters, as the neural
network parametrization can learn an approximation of the spectral filters, this work

9

Figure 7: Sample learned filters across all three initialization methods (see Figure 3 for
labels). These filters were normalized for plotting.

should be a strict generalization of the STU [9]. Thus, the fact that head-to-head
competitions between the learned and spectral filters tilts disproportionately towards the
spectral filters suggests an issue with our parametrization or learning approach. Generally,
the results above indicate that there is significant room for improvement in our adaptive
filter approach. We had tried fully parameterized filters and had poor performance, but it
is possible that with more epochs and a more intensive training procedure, these filters
could perform well.

We hypothesize that initialization is incredibly important to the performance of the
filters, and our testing supports this idea. Thus another direction for future work includes
initializing the adaptive filters to be near the the spectral filters and learning from there.
Additionally, we hope to explore mathematical results on the class of kernels that arise
with non-symmetric linear dynamical systems, hoping that perhaps a mathematical
construction for filters exist similar to the symmetric case.

One potential limitation of our work is that our method for generating linear dynamical
systems (A,B,C) in Equation 5 is not necessarily representative of many real-world
systems, in which A contains many eigenpairs with large eigenvalues (> 0.9). For example,
because our matrix A′

α is drawn from the Ginibre ensemble, it is well known that as
dh →∞ the distribution of the eigenvalues of 1√

dh
A′
α converges to the uniform distribution

on the complex unit disc, so only a small proportion of the eigenvalues of Aα will have
norm greater than 0.9 [2].

4 Conclusion
We observe that learned adaptive filters in conjunction with fixed filters can be competitive
with the original spectral filters described in Hazan et al [9]. However, we have not yet
found filters that improve upon the spectral filters for non-symmetric linear dynamical
systems, suggesting that – for systems from our generating process – they are still well
modeled by a symmetric linear SSM. However, we expect that real-world systems abide by

10

Figure 8: An example of the adaptive filters fitting a non-symmetric LDS.

different generative patterns and distributions, and we hope in the future to investigate
whether our observed patterns hold in real-world data.

Additionally, its worth emphasizing that the methods employed in this paper are
data-independent. Thus, these techniques can be easily scaled and, for future work, we
expect to try similar methods at a larger scale. We are optimistic that learned filters
represent a path forward from the spectral filters, and we look forward to future work
investigating this area.

References
[1] Agarwal, N., Suo, D., Chen, X., and Hazan, E. Spectral state space models,

2024.

[2] Bai, Z. D. Circular law. Ann. Probab. 25, 1 (1997), 494–529.

[3] Bourdois, L. Introduction to state space models (ssm). https://huggingface.
co/blog/lbourdois/get-on-the-ssm-train, July 2024.

[4] Cartesia. Real-time multimodal intelligence for every device. https://www.
cartesia.ai. Accessed: 2024-12-12.

[5] Gu, A., and Dao, T. Mamba: Linear-time sequence modeling with selective state
spaces, 2024.

[6] Gu, A., Dao, T., Ermon, S., Rudra, A., and Re, C. Hippo: Recurrent memory
with optimal polynomial projections, 2020.

[7] Gu, A., Goel, K., and Ré, C. Efficiently modeling long sequences with structured
state spaces, 2022.

[8] Gu, A., Goel, K., Saab, K., and Ré, C. Structured state spaces: Combining
continuous-time, recurrent, and convolutional models. Hazy Research Blog (Jan
2022).

11

https://huggingface.co/blog/lbourdois/get-on-the-ssm-train
https://huggingface.co/blog/lbourdois/get-on-the-ssm-train
https://www.cartesia.ai
https://www.cartesia.ai

[9] Hazan, E., Singh, K., and Zhang, C. Learning linear dynamical systems via
spectral filtering, 2017.

[10] Kalman, R. A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering 82, Series D (1960), 35–45.

[11] Liu, Y. I., Nguyen, W., Devre, Y., Dogariu, E., Majumdar, A., and
Hazan, E. Flash stu: Fast spectral transform units, 2024.

[12] Rush, S., and Karamcheti, S. The annotated s4: Efficiently modeling long
sequences with structured state spaces. https://srush.github.io/annotated-s4/,
2024.

12

https://srush.github.io/annotated-s4/

	Introduction
	Linear SSMs
	The Spectral Transform Unit
	Limitations of the STU

	Methodology
	Overview
	Experimentation

	Results and Discussion
	Combined Fixed and Adaptive Filters
	Comparison with STU Performance
	Discussion

	Conclusion

